期刊文献+

基于改进BP神经网络的手写字符识别 被引量:22

Handwritten Character Recognition based on Improved BP Neural Network
原文传递
导出
摘要 针对标准反向传播(BP,Back Propagation)神经网络算法收敛速度慢、易陷入局部极小等缺点,采用附加动量法与学习速率自适应调整相结合策略对神经网络初始参数进行设置。通过在权重计算公式中加入动量项,降低神经网络对误差曲面局部调节的敏感性,有效抑制其陷于局部极小。学习速率根据总误差的变化进行自适应调整,可以有效地缩短学习时间,加快收敛速度。将该改进算法应用于数字、英文字母以及简单汉字的手写字符识别系统中,进行了有无动量、有无噪声等实验,结果表明该方法与传统BP算法相比识别精度较高、训练时间较短且具有较强的鲁棒性。 A modified back propagation(BP) algorithm with additional momentum and self-adaptive learning rate is adopted to set up the initial parameters of the neural network,which could overcome the disadvantages of standard BP algorithm,such as slow convergence rate and easy fall into local minimum.The network sensibility to the local adjustment of error curved surface could be reduced and the local minimum suppressed efficiently by adding momentum item into the weight calculation formula,a self-adaptive learning algorithm is implemented,thus to adjust the learning rate according to the total error and shorten the training time and speed up the convergence rate.The improved algorithm is applied to recognising the handwritten characters,including numbers,English letters and some simple Chinese characters.The experimental results indicate that the proposed algorithm could achieve higher recognition accuracy,shorten the training time and has better robustness,as compared with the traditional BP algorithm.
出处 《通信技术》 2011年第5期106-109,118,共5页 Communications Technology
基金 苏州大学科研预研基金资助项目(NO.Q3108805)
关键词 模式识别 BP神经网络 算法改进 手写字符识别 附加动量 自适应学习速率 pattern recognition BP neural network improved algorithm handwritten character recognition additional momentum self-adaptive learning rate
  • 相关文献

参考文献5

  • 1顾晨勤,葛万成.基于模板匹配算法的字符识别研究[J].通信技术,2009,42(3):220-222. 被引量:28
  • 2贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:48
  • 3Mat Buckland.游戏编程中的人工智能技术[M].吴祖增,沙鹰,译.北京:清华大学出版社,2006:110-111.
  • 4林健.基于BP神经网络的鼠标手势识别实验程序[EB/OL].(2008-02-13)[2010-06-16].http://blog.linjian.org/articles/bp-mouse-gesture-recognition/.
  • 5俞庆英.联机手写汉字识别系统的研究与实现[D].合肥:安徽大学,2006.

二级参考文献8

  • 1龚声蓉.刘纯平.王强,等.数字图像处理与分析[M].北京:清华大学出版社,2000.
  • 2阎平凡 张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2001..
  • 3Weymacre N,Martens J P.A fast and robust learning algorithm for feedforward neural networks[J].Neural Networks,1991,4(3):363-369.
  • 4Chan L W,Fallside F.An adaptive training algorithm for back propagation networks[J].Computer Speech and Language,1987,2:205-218.
  • 5Fahlman S C,Lebiere C.The Cascade Correlation Learning Architecture[J].Advance in neural information processing systems,1990,2:524-532.
  • 6Rumelhart D E,Hinton G E,Williams R J.Learning representations by back-propagation errors[J].Nature,1986,323:533-536.
  • 7Kirkpatrick S,Gelatt C D,Vecchi M P.Optimization by simulated annealing[J].Science,1983,220:671-680.
  • 8付忠良.一些新的图像阈值选取方法[J].计算机应用,2000,20(10):13-15. 被引量:43

共引文献75

同被引文献171

引证文献22

二级引证文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部