期刊文献+

Boundary velocity slip of pressure driven liquid flow in a micron pipe 被引量:7

Boundary velocity slip of pressure driven liquid flow in a micron pipe
原文传递
导出
摘要 The velocity slip of gas flow in a micron channel has been widely recognized.For pressure driven liquid flow in a macro pipe,theminute velocity slip at the wall boundary is usually neglected.With a decreasing scale in the cross section of the flow passage,the effect of velocity slip on flow and heat transfer behaviors becomes progressively more noticeable.Based on the three Hamaker homogeneous material hypotheses,the method for calculating the acting force between the solid and liquid molecular groups is established.By analyzing the forces exerted on the liquid group near the pipe wall,it is found that the active force arising from the rough solid wall can provide the component force to resist the shearing force and keep the liquid group immobile.Based on this a velocity slip criterion is proposed.Considering the force balance of a slipping liquid group,the frictional force caused by the solid wall can be obtained and then the velocity of the liquid group can be calculated using the derived coefficient of friction.The investigation reveals that,in a micron pipe,a small velocity slip may occur when the flow pressure gradient is relatively large,and will cause errors in the pipe flow estimates. The velocity slip of gas flow in a micron channel has been widely recognized. For pressure driven liquid flow in a macro pipe, the minute velocity slip at the wall boundary is usually neglected. With a decreasing scale in the cross section of the flow passage, the effect of velocity slip on flow and heat transfer behaviors becomes progressively more noticeable. Based on the three Hamaker homogeneous material hypotheses, the method for calculating the acting force between the solid and liquid molecular groups is established. By analyzing the forces exerted on the liquid group near the pipe wall, it is found that the active force arising from the rough solid wall can provide the component force to resist the shearing force and keep the liquid group immobile. Based on this a velocity slip criterion is proposed. Considering the force balance of a slipping liquid group, the frictional force caused by the solid wall can be obtained and then the velocity of the liquid group can be calculated using the derived coefficient of friction. The investigation reveals that, in a micron pipe, a small velocity slip may occur when the flow pressure gradient is relatively large, and will cause errors in the pipe flow estimates.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2011年第15期1603-1610,共8页
基金 supported by the National Natural Science Foundation of China (10872088) the Doctoral Foundation of Ministry of Education of China (20070291004 and 20093221120009) the Academic Discipline Construction Fund of Nanjing University of Technology
关键词 液体流动 速度滑移 压力边界 微米管 驱动 固体壁面 气体流动 传热行为 velocity slip pressure driven liquid molecular group coefficient of friction
  • 相关文献

参考文献11

二级参考文献82

共引文献100

同被引文献57

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部