摘要
传统的基于灰 度的 M R I 脑图象分 割很 难达 到临 床应 用的 需要, 因为 受 R F 线圈、 M R 设备 的操 作环境等的影响 ,在同一 幅 图象 中或 各 扫描 图象 间都 存 在灰 度不 均 匀性。 本 文采 用 聚类 分 析法 ,由 单谱图象的灰 度和纹理参数构 成特征向量,进 行初始分 类。在 此基础 上采用 适配 分割算 法,通 过估计有偏场, 对多谱图象的灰 度进行校正,从 而实现对脑组织 的正确分类。
Conventional intensity based segmentation of brain MR images can hardly meet the needs of the clinical application. Intra scan and inter scan intensity inhomogeneities due to RF coils and the operating conditions of the MR equipment are a common source of difficulty. In this paper, cluster analysis was used for the initial classification in the feature space consisting of intensity of a MR image and its textures. Then a new method called adaptive segmentation was performed. Using the expectation maximization (EM) algorithm, we iteratively alternated evaluations of a posterior tissue class probabilities and the bias field, and finally obtained correct segmentation of multispectral MR images.
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
1999年第3期289-294,共6页
Chinese Journal of Biomedical Engineering
关键词
纹理分析
组织分类
NMR
成像
脑图象
Magnetic Resonance Image (MRI)
Texture analysis
Adaptive segmentation
Bias field
Tissue classification