期刊文献+

改进的DNA编码遗传算法在翼型设计中的应用

Application of Improved DNA Encoding Genetic Algorithm to Airfoil Design
下载PDF
导出
摘要 遗传算法作为一种比较成熟的智能算法,因其具有全局搜索能力和并行性得以在翼型气动优化中广范应用。本文在编码方式、种群初始化和遗传算子等方面对标准遗传算法进行了改进。其中,DNA的编码方式增加信息的丰富性;拉丁超立方抽样初始化使种群分布相对均匀;插入、删除、倒位等算子增加种群的多样性,加快收敛;感染算子加速种群摆脱停滞或早熟。计算结果表明:与标准遗传算法相比,改进后的DNA编码遗传算法收敛更快,全局性更好。 Genetic algorithm,which is a mature aptitude algorithm,has been widely applied to airfoil design.In this paper,the standard genetic algorithm is improved by encoding genetic operators and initialization,So that the DNA encoding includes more information;the Latin hypercube sampling distribution of the initialization population is more reasonable;insertion,deletion and inversion operators increase the diversity of the population to accelerate convergence;infection operator gets rid of stagnation or premature of population.Function test and airfoil design show that this means has faster convergence and better global ability compared with standard Genetic Algorithm.
作者 徐蔚 夏露
出处 《航空工程进展》 2011年第2期157-162,共6页 Advances in Aeronautical Science and Engineering
基金 西北工业大学翱翔之星计划
关键词 遗传算法 翼型设计 DNA编码 genetic algorithms airfoil design DNA encoding
  • 相关文献

参考文献3

二级参考文献35

  • 1C.A.奈特基.分子病毒学[M].北京:科学出版社,1980..
  • 2Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms// Proc of the 1 st International Conference on Genetic Algorithm. Hillsdale, USA, 1985 : 93 - 100
  • 3Coello C C A. Evolutionary Multiobjective Optimization: A Historical View of the Field. IEEE Computational Intelligence Magazine, 2006, 1(1): 28-36
  • 4Coello C C A. 20 Years of Evolutionary Multi-Objective Optimization: What Has Been Done and What Remains to Be Done//Yen G Y, Fogel D B, eds. Computational Intelligence: Principles and Practice, Chapter 4. New York, USA : IEEE Computational Intelligence Society, 2006:73 -88
  • 5Fouseca C M, Fleming J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization // Proc of the 5th International Conference on Genetic Algorithms. San Mateo, USA, 1993 : 416 -423
  • 6Srinivas N, Deb K. Muhiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation. 1994, 2(3) : 221 -248
  • 7Horn J, Nafpliotis N, Goldberg D E. A Niched Pareto Genetic Algorithm for Multiobjective Optimization//Proc of the 1 st IEEE World Congress on Evolutionary Computational Intelligence. Piscataway, USA, 1994:82-87
  • 8Zitzler E, Thiele L. Multiobjective Optimization Using Evolutionary Algorithms--A Comparative Study // Proc of the 5th International Conference on Parallel Problem Solving from Nature. Amsterdam, Netherlands, 1998 : 292 -304
  • 9Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans on Evolutionary Computation, 1999, 3 (4) : 257 - 271
  • 10Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report, 103, Zurich, Switzerland: ETH Zurich. Computer Engineering and Networks Laboratory (TIK), 2001

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部