期刊文献+

航空型号项目风险预测的BP神经网络模型及应用 被引量:2

Application and Model of the Aviation Model Project Risk Predicting Based on BP Neural Network
下载PDF
导出
摘要 本研究克服了单纯采用专家风险因子测度方法主观性较强的缺点,以及单纯采用人工神经网络评估模型模糊性的缺点,结合两种方法的优点,利用基于BP神经网络算法的Microsoft Visual C++程序,在专家风险因子测度基础上,通过大量风险评估成功案例数据的训练,成功建立了航空型号项目风险预测模型。该模型可以较为精确、客观地预测型号项目的失败概率、成功概率、失败后果等风险因子,为型号项目管理决策提供更可靠的理论指导。 The shortcoming of both expert's risk measurement method,which is artificial and subjective,and artificial neural network method with pure subjectivity are overcome in this paper.Combined with the advantages of both expert's risk measurement method and artificial neural network method,using Microsoft Visual C++ neural network based on BP algorithm procedures,through a large number of successful risk assessment cases of training data which estimated by experts,the aviation model project risk prediction model has been successfully established.The model can accurately and objectively predict the aviation model project's failure probability,success probability and failure consequences risk factors etc.The model can provide the project management and decision with more reliable theory and guidance.
作者 唐波 刘蕾
出处 《航空工程进展》 2011年第2期241-244,共4页 Advances in Aeronautical Science and Engineering
基金 西北工业大学2010年度政策研究基金(ZYZ201003)
关键词 航空型号项目 BP神经网络 风险预测模型 aviation model project BP neural network risk prediction model
  • 相关文献

参考文献8

二级参考文献32

  • 1卢宗华.多目标决策方案评价的神经网络模型研究[J].山东科技大学学报(自然科学版),2005,24(2):74-76. 被引量:6
  • 2于冬.基于BP神经网络的风险投资评估模型[J].科技管理研究,2005,25(9):206-208. 被引量:6
  • 3陆琼瑜,童学锋.BP算法改进的研究[J].计算机工程与设计,2007,28(3):648-650. 被引量:35
  • 4NASA. Program and Project Management Processes and Requirements. APG710515A, 1998.
  • 5ECSS. Space Project Management: Risk Management. ECSS2M200203A, 2001.
  • 6[1]Holden P L.Risk assessment of major hazards:a brief overview of methods and information sources[J].Health and Safety Executive,1989 (9):15-19.
  • 7[2]Covello V T.Decision analysis and risk management decision making:issues and methods[J].Risk Analysis,1987(7):23 -31.
  • 8[3]Baccarini D,Archer R.The risk ranking of projects:a methodology[J].International Journal of Project Management,2001,19:139-145.
  • 9[4]DavidI B,Raz T.An integrated approach for risk response development in project planning[J].Journal of The Operational Research Society,2001,52(1):14-25.
  • 10卢有杰 卢家仪.项目管理[M].北京:清华大学出版社,1998.40-50.

共引文献53

同被引文献27

  • 1王寓辰,张金隆,丛国栋.基于粗糙集的IT项目风险评价方法研究[J].工业工程与管理,2006,11(2):87-91. 被引量:9
  • 2张超,马存宝,许家栋.基于灰色马尔可夫SCGM(1,1)_C模型的空难人数预测[J].系统工程理论与实践,2006,26(5):135-139. 被引量:25
  • 3李高扬,刘明广,吴育华.工程项目风险预测模型[J].统计与决策,2006,22(22):143-144. 被引量:10
  • 4雷辉 邓彦龙等.基于支持向量机的工程项目风险预测.北方经济,2006,.
  • 5Cahit Perkgoz, Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa. A multi-objective lead time control problem in multi-stage assembly systems using genetic algorithms[J]. European Journal of Operational Research, 2007, (180) : 292-308.
  • 6Stefan Kraupl, Christian Wieckert. Economic evaluation of the solar carbothermic reduction of ZnO by using a single sensitivity analysis and a Monte-Carlo risk analysis[J]. Energy, 2007, (32) : 1134-1147.
  • 7Siu Kui Au, Zhi-Hua Wang, Siu-Ming Lo. Compartment fire risk analysis by advanced Monte Carlo simulation[ J]. Engineer- ing Structures, 2007, (29) :2381-2390.
  • 8Nieto-Morote A, Ruz-Vila F. A fuzzy approach to construction project risk assessment[ J]. International Journal of Project Management, 2011, (29): 220-231.
  • 9Alejandro Balbas, Raquel Balbas, Silvia Mayoral. Portfolio choice and optimal hedging with general risk functions: a simplex- like algorithm [ J]. European Journal of Operational Research, 2009, (192). 603- 620.
  • 10M. De Beule, E. Maes, O. De Winter, W. Vanlaere, R. Van Impe. Artificial neural networks and risk stratification: a promising combination[J]. Mathematical and Comouter Modelllng. 2007. 46. (1 - 2) : 88-94.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部