摘要
针对常规BP神经网络的BP算法只能训练固定结构的神经网络,存在诸如易落入局部极值、没有引入提高泛化能力的训练机制等固有不足之处,以及一些神经网络进化算法的进化机制中存在的缺陷,本文提出一种BP神经网络进化算法,并用于高分辨雷达目标一维距离像的识别问题。实验结果表明,经所述方法优化后的神经网络结构简单、泛化能力优于BP算法和一些进化算法训练的网络。
Presents a new evolutionary algorithm for neural network and the algorithm is used for the classification of high range resolution radar targets. The algorithm overcomes inherent shortcomings of classical BP algorithms, such as fixed architecture weights training, local extrema problem and lack of generalization of training mechanism, and improves sme existing evolutionary algorithms for neural network. Simulations show that the trained neural network with the algorithm has simple architecture and better generalization ability over classical BP neural network and some other existing evolutionary algorithms for neural network.
出处
《数据采集与处理》
CSCD
1999年第3期273-277,共5页
Journal of Data Acquisition and Processing
基金
国家自然科学基金
航空科学基金
空军基础理论研究课题
关键词
雷达
目标识别
进化算法
信号处理
BP网络
neural networks
radar target recognition
range profile
evolutionary algorithm