期刊文献+

基于Hadoop的校园云计算系统 被引量:14

Cloud System for Campus Based on Hadoop
下载PDF
导出
摘要 针对传统的海量数据处理方法硬件成本太高,并行程序编写困难的缺点,在云计算理论的基础上设计了一个用于处理海量数据的校园云计算系统。此云计算系统是在Hadoop分布式计算框架的基础上采用Map-Reduce编程模型实现对海量数据的并行处理,有效解决了成本问题,降低了并行编程的难度。 As the traditional method of massive data processing has shortcomings of high cost in hardware and the difficulties in parallel programming, a campus cloud computing system platform to handle massive data is designed based on the theory of cloud computing. This cloud computing system is based on the Hadoop distributed computing framework, using map-reduce programming model achieve parallel processing of the massive data. This system can save cost and reduce the difficulty of parallel programming.
出处 《计算机系统应用》 2011年第6期6-11,5,共7页 Computer Systems & Applications
基金 国家自然科学基金(90818028)
关键词 云计算 分布式计算 海量数据 HADOOP MAP-REDUCE cloud computing distributed computing massive data Hadoop map-reduce
  • 相关文献

参考文献9

  • 1Hadoop官方网站.2010.http://hadoop.apache.org.
  • 2HDFS Architecture. 2010. http://hadoop.apache.org/common/ docs/current/hdfs_design.html.
  • 3Borthakur D. The Hadoop Distributed File System: Architecture and Design. Apache Software Foundation. 2007, 3-14.
  • 4Dean J, Ghemawat S. Mapredteuce: Simplified Data Processing on Large Clusters. Communications of ACM,2008, 51(1):107-113.
  • 5陈全,邓倩妮.云计算及其关键技术[J].计算机应用,2009,29(9):2562-2567. 被引量:932
  • 6Ajkumarbuyya SP, Vecchiola C. Cloudbus Toolkit for Market-Oriented Cloud Computing. Lecture Notes in Computer Science, 2009,5931 (2009):24-44.
  • 7Hadoop Cluster Setup. 2010. http://hadoop.apache.org/ commorddocs/current/cluster_setup.
  • 8White T. Hadoop: The Definitive Guide.北京:清华大学出版社.2010.15-20.
  • 9Porter G, UC San Diego, La Jolla. Decoupling Storage and Computation in Hadoop with SuperDataNodes. ACM SIGOPS Operating System Review, 2010,44(2):41-46.

二级参考文献31

  • 1VARIA J. Cloud architectures - Amazon Web services [ EB/OL]. [ 2009 - 03 - 01 ]. http://acmbangalore, org/events/monthly-talk/ may-2008 --cloud-architectures---amazon-web-services. html.
  • 2BRYANT R E. Data-intensive supercomputing: The case for DISC, CMU-CS-07-128 [ R]. Pittsburgh, PA, USA: Carnegie Mellon University, Department of Computer Science, 2007.
  • 3SZALAY A S, KUNSZT P, THAKAR A, et al. Designing and mining multi-terabyte astronomy archives: The sloan digital sky survey [ C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2000:451 - 462.
  • 4BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: The Google cluster architecture [ J]. IEEE Micro, 2003, 23(2) : 22 -28.
  • 5GILES J. Google tops translation ranking [ EB/OL]. (2006 - 11 - 06) [ 2009 - 03 - 06 ]. http://www, nature, com/news/2006/ 061106/full/news061106-6. html.
  • 6维基百科.Cloud computing [ EB/OL]. [ 2009 - 03 - 10]. http://en. wikipedia, org/wiki/Cloud_computing.
  • 7中国云计算网.什么是云计算?[EB/OL].(2008-05-14)[2009-02-27].http://www.cloudcomputing-china.cn/Article/ShowArticle.asp?ArticleID=1.
  • 8VAQUERO L M, RODERO-MERINO L, CACERES J, et al. A break in the clouds: Towards a cloud definition [ J]. ACM SIGCOMM Computer Communication Review, 2009, 39(1): 50-55.
  • 9WEISS A. Computing in the clouds [ J]. ACM Networker, 2007, 11(4): 16 -25.
  • 10GRIFFITHS A, METHERALL G. Cluster intereonnection networks [ EB/OL]. (2000 -09 -01)[2009 -03 -03]. http://www, gridbus. org/-raj/csc433/ClusterNets, pdf.

共引文献931

同被引文献84

引证文献14

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部