期刊文献+

基于Gabor函数能量特征的指纹增强 被引量:3

Fingerprint enhancement based on Gabor functional energy features
下载PDF
导出
摘要 指纹图像增强技术可以有效地加强指纹的脊线特征,为指纹细节的提取和匹配奠定可靠的基础,直接影响指纹识别的识别率和识别速度。用Gabor函数变换将空域的指纹图像变换到联合空间频率域,并将联合空间频率域的能量分布作为指纹的特征。Gabor函数滤波器在频域内对子块其主方向上频率能量分布进行高分辨率滤波,进行了识别匹配。实验表明,该增强算法速度快,效果好,能够准确测量出指纹图像任何区域的纹线密度,特别是对于指纹图像不规则区域的频率提取有独特的优势。 Fingerprint enhancement can improve the clarity of the ridge structures of input fingerprint image,and ensure the performance of the minutiae extraction and fingerprint matching.Fingerprint enhancement affects the fingerprint recognition rate and recognition speed directly.Gabor function transform the fingerprint image airspace to joint space frequency domain,and the joint space frequency domain of energy distribution as characteristics of fingerprint.Gabor function filter in frequency domain make the main direction frequency energy distribution of subblock for high resolution filtering,and carried on the recognition match.Experiments show that the enhancement algorithm has a good speed and effect,which can measure the ridge density of any fingerprint image ,ang especially for frequency extraction of the irregular area.
出处 《电子测试》 2011年第5期19-22,共4页 Electronic Test
关键词 指纹增强 GABOR函数 频率能量 频带 Fingerprint enhancement Gabor function frequency energy frequency band
  • 相关文献

参考文献6

  • 1丁晋俊,孙乐昌.基于Gabor滤波指纹图像增强方法[J].舰船电子工程,2006,26(6):96-98. 被引量:3
  • 2Li,S.,Shawe-Taylor,J.Comparison and fusion of multi resolution features for texture classification[J].Pattern Recognition Letters, 2005, 26:633-638.
  • 3李新军,邵明省.基于Gabor函数能量的指纹识别[J].实验室研究与探索,2010,29(1):185-187. 被引量:4
  • 4HongLin,Wan Yife,i Jain A. Fingerprint Image enhancement: algorithm and performance evaluation[J] IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 777-789.
  • 5Thai R.Fingerprint image enhancement and minutiae extraction[R]. School of Computer Science and Software Engineering.The University of Western Australia, 2003:1-71.
  • 6李铁军,秦伟.自适应模板大小的Gabor指纹增强方法[J].计算机工程与应用,2010,46(20):216-218. 被引量:4

二级参考文献27

  • 1甘树坤,欧宗瑛,魏鸿磊.基于灰度特性的指纹图像分割算法[J].吉林化工学院学报,2006,23(1):68-71. 被引量:19
  • 2田捷,陈新建,张阳阳,杨鑫,何余良,李亮,谢卫华,郑志鹏.指纹识别技术的新进展[J].自然科学进展,2006,16(4):400-408. 被引量:39
  • 3胡瑾,田捷,陈新建,杨鑫,时鹏.一种指纹合成的方法及其实现[J].软件学报,2007,18(3):517-526. 被引量:8
  • 4[1]Lin Hong,Wan Yifei,Anil J.Fingerprint image enhancement:algorithm and performance evaluation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):777~789
  • 5[2]Mehtre B M,Murthy N N.Segmentation of fingerprint images using the directional image[J].Pattern Recognition,1987,20(4):429~435
  • 6[3]Mehtre B M,Chatterjee B.Segmentation of fingerprint images-a composite method[J].Pattern Recognition,1989,22(4):381~385
  • 7[5]Douglas Hung DC.Enhancement feature purification of fingerprint images[J].Pattern Recognition,1993,26(11):1661~1671
  • 8[6]E.Saatci,V,Tavsanoglu.Fingerprint image enhancement using CNN Gabor-Type filter.Cellular Neural Networks and Their Applications,2002[C].Proceedings of the 2001 7th IEEE International workshop,2002:377~382
  • 9Jain A K.Biometric recognition:Q & A[J].Nature,2007,449:38-40.
  • 10Cappelli R,Lumini A,Maio D,et al.Fingerprint image reconstruction from standard templates[J].IEEE Transactions on Pattern Analysis Machine Intelligence,2007,29(9):1489-1503.

共引文献8

同被引文献18

  • 1刘加海,白洪欢,黄微凹.基于彩色和边缘信息融合的道路分割算法[J].浙江大学学报(工学版),2006,40(1):29-32. 被引量:13
  • 2张伟,黄席樾,杨尚罡.汽车导航系统中的道路检测[J].重庆大学学报(自然科学版),2006,29(8):87-90. 被引量:8
  • 3陈勇,黄席樾,唐高友,刘俊.基于机器视觉的车道检测与二维重建方法[J].仪器仪表学报,2007,28(7):1205-1210. 被引量:14
  • 4陈清华,杨静宇,陈建亭.基于自适应模板的非结构化道路检测[J].东南大学学报(自然科学版),2007,37(6):1102-1107. 被引量:11
  • 5McCALL J C, TRIVEDI M M. Video-based lane estimation and tracking for driver assistance: survey, system and evaluation[ J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7 (1): 20-37.
  • 6TSAI J-F, HUANG S-S, CHAN Y-M, et al. Road detection and classification in urban environments using conditional random field models[ C]// Proceedings of the IEEE ITSC 2006. Piscataway: IEEE, 2006:17-20.
  • 7CONRAD P, FOEDISCH M. Performance evaluation of color based road detection using neural nets and support vector machines [ C]// Proceedings of the 32nd 2003 Applied Imagery Pattern Recognition Workshop. Piscataway: IEEE, 2003:2483-2486.
  • 8GABOR D. Theory of communication - Part 1 : the analysis of in- formation[ J]. Electrical Engineers Ⅲ, 1946, 93(26) : 429 -441.
  • 9ARINDAM K, BHATTACHARJEE D, DIPAK K B, et al. High performance human face recognition using independent high intensity Gabor wavelet responses: a statistical approach[ J]. International Journal of Computer Science & Emerging Technologies, 2011, 2 (1): 178-187.
  • 10SIMOND N, RIVES P. Homography from a vanishing point in ur- ban scenes[ C]// Proceedings of the 2003 16th IEEE/RSJ Interna- tional Conference on Intelligent Robots and System. Piscataway: IEEE, 2003:1005 - 1010.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部