期刊文献+

基于高损耗信道的纠缠分发实验模拟 被引量:2

Experimental simulation of quantum entanglement distribution over a high-loss channel
原文传递
导出
摘要 实验模拟了总信道损耗70dB的纠缠分发和Bell不等式的破坏,相当于纠缠光子对从轨道高度350km的卫星上发射(口径13.5cm),到仰角大于10°的地面站被接收(口径100cm)的信道损耗[11],模拟纠缠分发距离超过千公里;并且通过理论和实验研究,明确了高信道衰减下量子纠缠分发的关键技术突破点,首先必须降低系统暗计数和提高系统时间分辨,在此基础上提高纠缠源的亮度,系统将能容忍更高的信道衰减,实现更远的通信距离. We experimentally simulate entanglement distribution and demonstrate the violation of Bell’s inequality over 70 dB channel loss. Imaging a communication system which is composed of a satellite-based entangled photon source at a height of 350 km, two satellite-based transmitting telescopes each with a diameter of 13.5 cm, and two receiving telescopes each with a diameter of 100 cm on the ground station. At a minimum ground elevation angle of 10°, the attenuation for optical links to two ground stations over thousand kilometers is comparable to that we have achieved. Furthermore, theoretical and experimental studies demonstrate the key technology researches in entanglement distribution with high loss. First of all, we should reduce the dark noise and raise the time resolution of the system. On this basis, with the brightness enhancement of the source, the system is tolerant of higher link attenuation and long communication distance.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第6期53-57,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61078012)资助的课题~~
关键词 纠缠分发 信道损耗 时间分辨 BELL不等式 entanglement distribution channel loss time resolution Bell’s inequality
  • 相关文献

参考文献17

  • 1Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777.
  • 2Bell J S 1964 Physics 1 195.
  • 3Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880.
  • 4Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145.
  • 5Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N, Peer M 2009 Rev. Mod. Phys. 81 1301.
  • 6Aspelmeyer M, Bohm H R, Gyatso T, Jennewein T, Kahenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Resch K, Taraba M, Ursin R, Wahher P, Zeilinger A 2003 Science 301 621.
  • 7Peng C Z, YangT, Bao X H, Zhang J, Jin X M, Feng F Y, Yang B, Yang J, Yin J, Zhang Q, Li N, Tian B L, Pan J W 2005 Phys. Rev. Lett. 94 150501.
  • 8Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, Omer B, Farst M, Meyenburg M, Rarity J, Sodnik Z, Narbieri C, Weinfurter H, Zeilinger A 2007 Nat. Phys. 3 481.
  • 9Fedrizzi A, Ursin R, Herbst T, Nespoli M, Prevedel R, Scheidl T, Tiefenbacher F, Jennewein T, Zeilinger A 2009 Nat. Phys. 5 389.
  • 10Ursin R, Jennewein T, Kofler J, Perdigues J, Cacciapuoti L, Matos C J, Aspelmeyer M, Valencia A, Scheidl T, Fedrlzzi A, Acin A, Barbieri C, Bianco G, Brukner C, Capmany J, Cova S, Giggenbach D, Leeb W, Hadfield R H, Laflamme R, Lutkenhaus N, Milburn G, Peev M, Ralph T, Rarity J, Renner R, Samain E, Solomos N, Tittel W, Torres J P, Toyoshima M,Ortigosa-Blanch A, Pruneri V, Villoresi P, Walmsley I, Weihs G,.Weinfurter H, Zukowski M, Zeilinger A 2009 Europhys. News 40 26.

共引文献1

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部