摘要
详细研究了球面上借助于下三角矩阵Λ确定的Fourier-Laplace级数线性求和法的饱和问题.系统地给出了线性求和法的充分条件及饱和阶;使用Stepanets引入的ψ-导数清楚地刻画出饱和类.
For Fourier-Laplace series on the sphere, the probleme of linear methods generated by lower triangular metrix A are investigated in details. That is, on one hand, the suficient conditions for saturation of linear methods of Fourier- Laplace series and satufation orders are systematicly given, on the other hand, saturation classes are clearly given by using -derivative which Stepannets given first.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第3期298-302,共5页
Journal of Beijing Normal University(Natural Science)
基金
国家自然科学基金!19771009