摘要
运用改进的Ehrenfeuchtgames理论,适当定义了范数和囿函数,给出了无原子布尔代数理论的一个判定过程.利用这个结果,直接构造出完备布尔代数的判定过程,并且分析了它们的复杂度.
After properly defining the norm and bound functions a decision procedure for the first order theory of atomless boolean algebras is explicitly constructed by making use of the improved Ehrenfeucht game procedure, which is essentially a kind of quantivier elimination procedure. Subsequently, a decision method is achieving for the theory of complete boolean algebras based on that procedure and a result by the author. The computational complexities of both procedures are analysized.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第3期303-309,共7页
Journal of Beijing Normal University(Natural Science)
基金
国家自然科学基金!19571009
山西省自然科学基金
山西省留学生基金
关键词
完备布尔代数
可判定性
计算复杂性
数理逻辑
complete boolean algebra, Decidability
elementary equivalence, Ehrenfeuct game, computational complexity