摘要
提出了一个具有无穷多低维对称不变子空间的多态系统,用以描述受阻尼力和周期力影响并在二维势中运动的粒子,以此研究多态的混合吸引域和开关阵发现象.在每一个子空间中均有一个混饨吸引子,此外相空间中没有别的吸引子,当某个系统参数改变时,对于不变子空间的最大横截李雅普诺夫指数从负值变为正值,系统动力学行为相应从混合吸引域态变为多态的开关阵发态.
A dynamical system is considered, which contains infinite low-dimensional symmetric invariant subspaces and describes a partile moving in a two-dimensional potential subjected to friction and periodic forcing to investigate intermingled basins and on-off intermittency of multi-state. There is a Chaotic attractor in each subepace, and no other attractors in the phase space. As a parathe of the sysetem changes, the largest Lyapunov exponent transverse to the invariant subspaces can change from negative to positive, then the system dynamics changes from intermingled basin state to a multi-state on- off intermittency.Statistical behvior of the intermittency states is also investigated.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第3期351-355,共5页
Journal of Beijing Normal University(Natural Science)
基金
国家自然科学基金!19675008