期刊文献+

摄动边界元法在随温度变化线胀系数反问题中的应用 被引量:1

Application of Perturbation Boundary Element Method in Inverse Problem with Temperature Dependent Thermal Expansion Coefficient
下载PDF
导出
摘要 将摄动法和边界元法相结合求解物性值随温度变化的热弹性问题,先用摄动法将变系数微分方程转化成常系数微分方程,再按边界元法求解.又采用摄动边界元法和卡尔曼滤波,由有限个观察点的位移值,反算出随温度变化的线膨胀系数.算例表明本文方法简便、有效. The perturbation method and boundary element method were used to solve the thermoelastic problems with temperature dependent material properties. The differential equations of variable coefficient were changed into the differential equations of constant coefficient by the perturbation method. The boundary element method for solving this problem was proposed. The inverse method is a combination of the perturbation boundary element method and the Kalman filter. The thermal expansion coefficints related to temperature can be concluded by the displacements at observation points. The numerical examples show this method is valid with simplicity.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 1999年第10期1217-1219,共3页 Journal of Shanghai Jiaotong University
关键词 反问题 摄动边界元法 热弹性 线膨胀系数 热应力 inverse problem of material parameters perturbation boundary element method Kalman filter variable material property thermoelasticity
  • 相关文献

参考文献3

二级参考文献9

  • 1王元淳,孙浩.弹性、热弹性物性值反问题的边界元分析[J].计算结构力学及其应用,1993,10(4):490-494. 被引量:4
  • 2竹内洋一郎.热应力(增补改订)[M].东京:析出版社,1981.284.
  • 3王元淳 片山忠一 等.平面热弹性总理的边界元分析[J].上海力学,1985,6(4):19-25.
  • 4王元淳 片山忠一 等.应力边界元法解平面热弹性问题[J].工程力学,1988,5(1):18-24.
  • 5王元淳.平面非定常热弹性问题的边界元分析[J].上海力学,1988,9(2):48-54.
  • 6王元淳,工程力学,1988年,5卷,1期,18页
  • 7王元淳,上海力学,1988年,9卷,2期,48页
  • 8王元淳,边界元法基础,1988年,264页
  • 9王元淳,上海力学,1985年,6卷,4期,19页

共引文献5

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部