摘要
对于正整数 m ,n( n ≥3) ,设 Sm( n) 是第 m 个n 角数,本文证明了:当n > 6 且n - 2 是平方数时,方程 Sx( n) = Sy(3) 无正整数解( x ,y) ;当n > 6 ,2 n 且n - 2 非平方数时,该方程有无穷多组正整数解(x ,y) .
For any positive integers m,n with n ≥3,let S m(n) denote the m th n gonal number.We prove that(ⅰ) if n >6 and n -2 is a square,then the equation S x(n)=S y(3) has no positive integer solution ( x,y );(ⅱ)if n >6, 2 n and n -2 is not a square,then the equation has infinitely many positive integer solutions ( x,y ).
出处
《江西科学》
1999年第3期173-175,共3页
Jiangxi Science