期刊文献+

基于Gamma小波模型的网络流量预测 被引量:3

Network Traffic Prediction Based on Gamma Wavelet Model
下载PDF
导出
摘要 网络流量的精确预测是实现动态流量管理及控制的前提,由此提出一种基于Gamma小波模型的预测方法。将原始数据分解为高频信号和低频信号,采用Gamma小波模型对低频信号进行建模并获取服从Gamma分布的序列,分别对刚获取的序列以及高频信号采用加权一阶局域法进行预测,重构小波以合成数据。通过实验和数学分析的方法,证实该预测模型能够进行网络流量的短期预测。 Dynamic traffic management and control are based on the accurate prediction of network traffic.This paper proposes a prediction method based on Gamma wavelet model.Original data series are decomposed by Haar wavelet into a low frequency signal and several high frequency signals.It models the low frequency signal and obtains the new series which obey Gamma distribution.It predicts the new series and the high frequency signals based on the weighted first order local prediction.The respective prediction series are synthesized to get the final prediction data.Experimental results and analytic studies show that the model does perform well in the short-term network traffic prediction.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第9期187-189,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60673185) 教育部留学回国人员科研启动基金资助项目(教外司留[2007]1108号) 江苏省"青蓝工程"中青年学术带头人培养对象基金资助项目(苏教师[2007]2号)
关键词 网络流量预测 流量管理及控制 Gamma小波模型 局域预测 短期预测 network traffic prediction traffic management and control Gamma wavelet model local prediction short-term prediction
  • 相关文献

参考文献7

  • 1Leland W,Taqqu M,Willinger W.On the Self-similar Nature of Ethernet Traffic[J].IEEE/ACM Transactions on Networking,1994,2(1):1-15.
  • 2Papagiannaki K,Taft N,Zhang Zhili,et al.Long-term Forecasting of Internet Backbone Traffic:Observations and Initial Models[C]//Proc.of INFOCOM'03.London,UK:[s.n.],2003:753-764.
  • 3洪飞,吴志美.基于小波的多尺度网络流量预测模型[J].计算机学报,2006,29(1):166-170. 被引量:46
  • 4白翔宇,叶新铭,蒋海.基于小波变换与自回归模型的网络流量预测[J].计算机科学,2007,34(7):47-49. 被引量:22
  • 5王俊松.基于Elman神经网络的网络流量建模及预测[J].计算机工程,2009,35(9):190-191. 被引量:40
  • 6Wang Junyuan,Bai Guangwei,Shen Hang.Traffic Characterization and Modeling for Video Streaming over Multi-hop WLANs[C]//Proc.of IEEE WiCOM'08.Dalian,China:[s.n.],2008.
  • 7Seeling P,Reisslein M,Kulapala B.Network Performance Evaluation Using Frame Size and Quality Traces of Single-layer and Two-layer Video:A Tutorial[J].IEEE Communications Surveys and Tutorials,2004,6(2):58-78.

二级参考文献29

  • 1邹柏贤,姚志强.一种网络流量平稳化方法[J].通信学报,2004,25(8):14-23. 被引量:18
  • 2刘杰,黄亚楼.基于BP神经网络的非线性网络流量预测[J].计算机应用,2007,27(7):1770-1772. 被引量:66
  • 3Krunz M. , Makowski A.. Modeling video traffic using M/G/infinity input processes: A compromise between markovian and LRD models. IEEE Journal on Selected Areas in Communications, 1998, 16(5):733-748.
  • 4Leland W. E, , Taqqu M. S, , Willinger W. , Wilson D. V., On the self-similar nature of ethernet traffic. IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15.
  • 5Park K. , Kim G. , Crovella M.. On the effect of traffic self similarity on network performance. In: Proceedings of SHE International Conference Performance rand Control of Network Systems, Dallas, USA, 1997, 168-175.
  • 6Park K. , Willinger W.. Self-Similar Network Traffic and Performance Evaluation. Wiley-Interscience, 2000.
  • 7Paxson V. , Floyd S.. Wide-area traffic: The failure of poisson modelling. IEEE/ACM Transactions on Networking,1995, 3(3): 226-244.
  • 8Konstantina Papagiannaki, Nina Taft, Zhang Zhi I.i, Christophe Diot, Long-term forecasting of Internet backbone traffic:Observations and initial models. In:Proceedings of INFOCOM,London, UK, 2003, 753-764.
  • 9Groschwitz N. K. , Polyzos G. C.. A time series model of long-term NSFNET backbone traffic. In.. Proceedings of IEEE ICC,Pittsburgh, PA, 1994, 234-238.
  • 10Sang A. , Li S.. Predictability analysis of network traffic. In:Proceedings of INFOCOM, TelAviv, Israel, 2000, 342-351.

共引文献103

同被引文献19

  • 1饶云华,曹阳,杨艳.自相似网络通信量的多尺度预测研究[J].计算机工程与应用,2005,41(28):26-28. 被引量:6
  • 2洪飞,吴志美.基于小波的多尺度网络流量预测模型[J].计算机学报,2006,29(1):166-170. 被引量:46
  • 3李捷,刘瑞新,刘先省,韩志杰.一种基于混合模型的实时网络流量预测算法[J].计算机研究与发展,2006,43(5):806-812. 被引量:18
  • 4刘嘉煜,王公恕.应用随机过程[M].北京:科学出版社,2004.208-209.
  • 5FENG Hui-faug, SHU Yan-tai. A Robust System Accurate Real-time Summaries of Internet Traffic [ J Sigmetrics Performance Evaluation Review, 2005,33 ( 1 85 - 96.
  • 6CONSTANTINOUF, MAVROMMATIS P. Study on Network Traffic Prediction Techniques [ J ]. Wireless-Communications, Networking and Mobile Computing, 2005,2005 ( 9 ) : 23 - 26.
  • 7Feng Huifang,Shu Yantai. A robust system for accurate real- time summaries of Internet traffic [ J ]. S1GMETRICS Perform- ance Evaluation Review, 2005,33 ( 1 ) : 85-96.
  • 8Constantinou F, Mavrommatis P. Study on Network Traffic Pre- diction Techniques [ C ]//Proceedings of 2005 International Conference. [ s. 1. ] : [ s. n. ] ,2005:23-26.
  • 9Qiao Y, Skicewicz J, Dinda P. An empirical study of the multi-scale predictability of network traffic [ C ]//Proceedings of 13th IEEE International Symposium on High Performance Dis- tributed Computing. Honolulu : IEEE Press ,2004:66-76.
  • 10Huang N E, Shen N Z, Long S R. The empirical mode decom- position and the Hilbert spectrum for nonlinear and non-sta- tionary time series analysis[ C ]//Proceedings of the Royal So- ciety. London : [ s. n. ] , 1998:903-915.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部