期刊文献+

基于核对称散布矩阵空间的特征抽取方法

Feature Extraction Approach Based on Kernel Symmetrical Scatter Matrix Space
下载PDF
导出
摘要 为解决传统Fisher鉴别分析方法中非线性小样本的特征抽取问题,从核线性子空间角度出发,构造一种矩阵变换,得到核空间中类内散布矩阵的另一个对称核子空间,通过对2个核子空间分别求解,从而得到样本的有效鉴别信息。在NUST603和ORL人脸数据库上的实验结果验证了该算法的有效性。 In order to solve the feature extraction problem of nonlinear small sample sizes present in the traditional Fisher discriminant analysis method,a matrix transform is proposed on the basis of kernel linear subspace theory,by which a new kernel symmetrical linear subspace of within-class scatter matrix is constructed.Two kernel solution spaces derived from the within-class scatter matrix and its corresponding symmetrical subspace are respectively utilized to obtain the efficient discriminatory information of the samples.Experimental results conduct on the NUST603 and ORL face databases demonstrate the effectiveness of the proposed method.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第10期165-166,169,共3页 Computer Engineering
基金 江苏省高校自然科学基金资助项目(08KJB520003)
关键词 特征抽取 线性鉴别分析 对称子空间 小样本问题 feature extraction Linear Discriminant Analysis(LDA) symmetrical subspace Small Sample Size Problem(SSSP)
  • 相关文献

参考文献6

  • 1Hong Ziquan,Yang Jingyu.Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane[J].Pattern Recognition,1991,24(4):317-324.
  • 2王卫东,杨静宇.采用虚拟训练样本的二次判别分析方法[J].自动化学报,2008,34(4):400-407. 被引量:16
  • 3Yang Ran,Yang Jingyu.Why Can LDA be Performed in PCA Transformed Space[J].Pattern Recognition,2003,36(2):563-566.
  • 4Yang Jian,Frangi A F,Yang Jingyu,et al.KPCA Plus LDA:A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2005,27(2):230-244.
  • 5彭中亚,程国建.基于独立成分分析和核向量机的人脸识别[J].计算机工程,2010,36(7):193-194. 被引量:21
  • 6Yu Hua,Yang Jie.A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition[J].Pattern Recognition,2001,34(11):2067-2070.

二级参考文献20

  • 1陈杰,陈熙霖,高文.基于遗传算法重采样的人脸样本扩张[J].软件学报,2005,16(11):1894-1901. 被引量:8
  • 2刘海龙,丁晓青.基于镜像学习和复合二次距离的手写汉字识别[J].清华大学学报(自然科学版),2006,46(7):1239-1242. 被引量:2
  • 3王卫东,郑宇杰,杨静宇.采用虚拟训练样本优化正则化判别分析[J].计算机辅助设计与图形学学报,2006,18(9):1327-1331. 被引量:17
  • 4李云峰,欧宗瑛.基于Gabor小波变换和支持向量机的人脸识别[J].计算机工程,2006,32(19):181-182. 被引量:5
  • 5Hyvarinen A, Oja E. Independent Component Analysis: Algorithms and Application[J]. Neural Networks, 2003, 13(4/5): 411-430.
  • 6Tsang I W, Kwok J T, Zurada J M. Generalized Core Vector Machines[J]. IEEE Transactions on Neural Networks, 2006, 17(5): 1126-1140.
  • 7Samaria F, Harter A. Parameterisation of a Stochastic Model for Human Face Identification[C]//Proc. of the 2nd IEEE Workshop on Applications of Computer Vision. Sarasota, FL, USA: [s. n.], 1994.
  • 8Tsang 1 W, Kocsor A, Kwok J T. Simpler Core Vector Machines with Enclosing Balls[C]//Proc. of the 24th International Conference on Machine Learning. Corvallis, Oregon, USA: [s. n.], 2007.
  • 9Fisher R A. The use of multiple measurements in taxonomic problems. Annals Eugen, 1936, 7:178-188
  • 10Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intellgence, 1997, 19(7): 711-720

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部