期刊文献+

基于虚拟通道独立分量分析的阻抗胃动力消噪

Denoise of Impedance Gastric Motility Based on Virtual Channel Independent Component Analysis
下载PDF
导出
摘要 为消除胃动力阻抗信号中混叠的噪声信号,利用独立分量分析的冗余取消特性,提出一种新的胃动力阻抗信号消噪方法。采用经验模态分解构造虚拟噪声通道,将一维原始胃动力阻抗信号扩展为多维观测信号,应用FastICA算法对其实施盲分离。仿真实验结果表明,该方法能有效消除叠加在胃动力阻抗信号中的噪声,不需要大量的观测样本,可运用独立分量分析实现对单个观测样本的消噪处理。 In order to eliminate aliasing noise signal of gastric motility impedance signals,using independent component analysis of the redundancy reduction features,a new method of gastric motility impedance signals denoise is proposed.Construction of virtual noise channel used empirical mode decomposition,the one-dimensional original gastric motility impedance signal is extended to multi-dimensional observation signals,and it is implemented blind separate by FastlCA algorithm.Simulation experimental results show that the denoise method can effectively eliminate the noise of gastric motility impedance signal.The method does not require a large number of observation samples,which can achieve denoise of a single observed sample by Independent Component Analysis(ICA).
出处 《计算机工程》 CAS CSCD 北大核心 2011年第10期260-262,共3页 Computer Engineering
基金 重庆市渝中区科委课题基金资助项目"基于数据挖掘技术的HIS系统的研究"
关键词 阻抗胃动力信号 经验模态分解 FASTICA算法 虚拟噪声通道 impedance gastric motility signal empirical mode decomposition FastICA algorithm virtual noise channel
  • 相关文献

参考文献6

  • 1Xing Jinhong,Chen Jiande.Alterations of Gastrointestinal Motility in Obesity[J].Obesity Research,2004,12(11):1723-1732.
  • 2Wang Z S,Cheung J Y,Chen J D Z.Blind Separation of Multichannel Electrogastrogams Using Independent Component Analysis Based on a Neural Network[J].Medical & Biomedical Engineering & Computing,1999,37(1):80-85.
  • 3李鸿燕,赵菊敏,王华奎,萧宝瑾.基于独立分量分析的单通道语音增强算法[J].计算机工程,2007,33(24):35-36. 被引量:7
  • 4王栋,陈映鹰,秦平.基于ICA和SNF的SAR机场目标提取[J].计算机工程,2009,35(24):1-3. 被引量:7
  • 5Huang N E.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis[J].Procedures of the Royal Society of London,1998,454(3):903-995.
  • 6Hyvarinen A.Fast and Robust Fixed-point Algorithms for Independent Component Analysis[J].IEEE Transactions on Signal Processing,1999,10(3):626-634.

二级参考文献14

  • 1吴强,王行愚.基于独立分量分析的图像融合算法[J].计算机工程,2007,33(10):220-221. 被引量:6
  • 2Donoho D L. De-noising by Soft-thresholding[J]. IEEE Trans. on IT, 1995, 41(3): 613-627.
  • 3Hyvarinen A. Fast and Robust Fixed-point Algorithms for Independent Component Analysis[J]. IEEE Trans. on Neural Networks, 1999, 8(3): 622-634.
  • 4Martinez C L Polarimetric SAR Speckle Noise Model[J]. IEEE Trans. on GRS, 2003, 41(10): 2232-2242.
  • 5Comon P.Independent Component Analysis--A New Concept[J].Signal Processing,1994,36(3):287-314.
  • 6Hyvarinen A,Oja E.Independent Component Analysis:Algorithm and Applications[J].Neural Networks,2000,13(4):411-430.
  • 7Hyvarinen A.Survey on Independent Component Analysis[J].Neural Computing Surveys,1999,2(1):94-128.
  • 8Hyvarinen A,Oja E.A Fast Fixed-point Algorithm for Independent Component Analysis[J].Nerural Computation,1997,9(7):1483-1492.
  • 9邵永社,陈鹰,林怡,李晶.合成孔径雷达图像斑点噪声滤波方法研究[J].同济大学学报(自然科学版),2008,36(2):258-262. 被引量:4
  • 10宦若虹,杨汝良.基于ICA和SVM的SAR图像特征提取与目标识别[J].计算机工程,2008,34(13):24-25. 被引量:15

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部