期刊文献+

回火温度对Mn系低碳贝氏体钢的低温韧性的影响 被引量:45

EFFECT OF TEMPERING TEMPERATURE ON LOW TEMPERATURE IMPACT TOUGHNESS OF A LOW CARBON Mn-SERIES BAINITIC STEEL
原文传递
导出
摘要 研究了回火温度对Mn系低碳贝氏体钢(LCMB)组织及低温冲击韧性的影响.显微组织分析表明,LCMB钢的轧态组织以贝氏体板条为主,经460℃回火2 h后,部分贝氏体板条开始粗化,经600℃回火2 h后,出现准多边形铁素体组织,并观察到少量铁素体再结晶现象.对力学性能的测试结果表明,LCMB钢板经460℃回火2 h后达到最佳的强韧性配合,屈服强度保持在725 MPa,-40℃Charpy冲击功A_(KV)为146 J.冲击断口呈现明显的韧性断裂形貌,韧脆转变温度由轧态的-18℃降低至-48℃.EBSD和TEM分析表明,低温韧性的改善是由于在同火过程中贝氏体板条的同复引起的大角度晶界比例增加及有效晶粒尺寸降低造成的. In order to reduce the cost of alloying elements,low carbon Mn series bainitic steels have been developed.The effect of tempering temperature on the microstructure and low temperature impact toughness of a low carbon Mn-series steel has been investigated in the present study.The as rolled steel plate samples with 30 mm thickness were tempered from 280℃to 600℃for 2 h. Metallographic microstructure show that the microstructure of the as-rolled steel is mostly bainite laths.Bainite laths start to merge and broaden after tempering at 460℃,and quasi-polygonal ferrite structures could be revealed after tempering at 600℃.Compared with the as-rolled steel,after tempering at 460℃,the yield strength of the steel changes slightly,remaining 725MPa,while the Charpy absorbed energy at-40℃increases from 38 J to 146 J,and the ductile-brittle transition temperature(DBTT)decreases from-18℃to-48℃.The EBSD and TEM results indicate that the improvement of low temperature impact toughness after tempering at 460℃is caused by the increase of fraction of high angle boundaries and the decrease of effective grain size during the recovery process of bainite laths.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2011年第5期513-519,共7页 Acta Metallurgica Sinica
基金 北京市科技计划资助项目D08050303450804~~
关键词 低碳贝氏体钢 回火组织 低温冲击韧性 回复组织 组织细化 low carbon bainitic steel tempering microstructure low temperature impact toughness recovery process microstructure refinement
  • 相关文献

参考文献2

二级参考文献11

  • 1方鸿生,王家军.贝氏体相变的激发-台阶机制[J].金属学报,1994,30(11). 被引量:12
  • 2李龙,丁桦,杜林秀,宋红梅,郑芳.仿晶界型铁素体/贝氏体低碳锰钢的组织和力学性能[J].金属学报,2006,42(11):1227-1232. 被引量:12
  • 3[1]Morris J W, Jr Gao Z, Krenn C R, Kim Y H. ISIJ Int,2001; 41:599
  • 4[2]Ernest J C, Richard E L. Naval Eng J, 1990; 5:63
  • 5[3]Tomoya K, Keniti A, Makoto T. In: Taylor K A, Thomposon S W, Fletched F Beds, Physical Metallurgy of Directquenched Steel, Warrendale: TMS, 1993:297
  • 6[6]Wang X M, He X L, Yang S W, Shang C J, Wu H B. ISIJ Int, 2002; 42:1553
  • 7[7]Shang C J, Yang S W, Wang X M, Wu H B, He X L.Mater Sci Forum, 2003; 426-423:1439
  • 8[9]Osamura K, Okuda H, Ochiai S, Takashima M, Asano K,Furusaka M, kishida K, Kurosawa F. ISIJ Int, 1994; 34:359 .
  • 9[10]Gladman T. Mater Sci Technol, 1999; 15:30
  • 10邓天勇,许云波,袁向前,董毅,吴迪,刘相华,王国栋.含Nb低碳钢相变温度A_(r3)预测模型[J].金属学报,2007,43(10):1091-1095. 被引量:6

共引文献42

同被引文献370

引证文献45

二级引证文献309

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部