期刊文献+

基于频响函数的结构健康监测主成分分析法 被引量:4

A PCA-based algorithm for structural health monitoring using frequency response functions
下载PDF
导出
摘要 基于测试频响函数,提出一种简单而有效的结构健康监测主成分分析(PCA)新方法。以结构的频响函数作为基本数据,首先将结构健康状态下的频响函数数据作为基本训练样本,通过PCA技术提取结构健康状态特征,并获得结构健康特征变换矩阵,即协方差的特征向量矩阵;然后再对损伤结构的测试频响函数数据进行转换以提取结构相应损伤状态特征;最后在二维PCA空间比较两次提取的结构状态特征分布图即可判断结构是否发生损伤并评估其损伤程度。两个数值算例表明基于频响函数的结构健康监测主成分分析新方法正确有效。该方法基于结构振动响应,与模型无关且诊断前无需大量的训练样本、计算量小、抗噪性能好,具有良好的应用前景。 Based on measured frequency response functions(FRFs),an easier and more efficient method for structural health monitoring was proposed by using principle component analysis(PCA) here.The FRFs of a healthy structure were used as the initial data.With this method a PCA transformation technique was used to obtain the features of the intact structure,i.e.,its principle components(PCs) with which an orthogonal transformation matrix packed using the first few eigenvectors of the covariance matrix was found.Further,the orthogonal transformation matrix was used to transform the FRFs of a damaged structure so as to find the corresponding damage state features of the structure.Both structural damage detection and structural health monitoring could be achieved by comparing the two-dimensional PCA distribution charts corresponding to the damaged state and the healthy one of the structure.Two numerical simulation examples showed that the proposed method is correct,effective and feasible.
作者 朱军华 余岭
出处 《振动与冲击》 EI CSCD 北大核心 2011年第5期111-115,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50978123 10032005) 中央高校基本科研业务费专项资金资助项目(21609601)
关键词 主成分分析 频响函数 损伤识别 结构健康监测 principle component analysis(PCA) frequency response function(FRF) damage detection structural health monitoring
  • 相关文献

参考文献10

  • 1Sohn H, Farrar C R, Hemez F M, et al., A Review of Structural Health Monitoring Literature: 1996 - 2001 [ R]. LA-13976-MS, New Mexico: Los Alamos National Laboratory Report, 2003.
  • 2Chiang L H, Kotanchek M E, Kordon A K. Fault diagnosis based on Fisher discriminant analysis and support vector machines[ J]. Computers & Chemical Engineering, 2004, 28(8) : 1389 - 1401.
  • 3Zang C, Imregun M. Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection [ J]. Journal of Sound and Vibration, 2001, 242(5) : 813 - 827.
  • 4Oh C. K. , Sohn H. Damage diagnosis under environmental and operational variations using unsupervised support vector machine [ J]. Journal of Sound and Vibration, 2009, 325 ( 1 -2) : 224 -239.
  • 5Kullaa J. Damage detection of the Z24 bridge using control charts [ J ]. Mechanical Systems and Signal Processing, 2003, 17(1): 163-170.
  • 6Mustapha F, Manson G, Pierce S G, et al. Structural health monitoring of an annular component using a statistical approach[J]. Strain, 2005, 41(3): 117-127.
  • 7Furukawa A, Otsuka H, Kiyono J. Structural damage detection method using uncertain frequency response functions [J]. Computer-Aided Civil and Infrastructure Engineering, 2006, 21(4): 292-305.
  • 8Yan A M, Kerschen G, De Boe P, et al. Structural damage diagnosis under varying environmental conditions-Part I: A linear analysis [ J ]. Mechanical Systems and Signal Processing, 2005, 19(4) : 847 -864.
  • 9Trendafilova I, Cartmell M P, Ostachowicz W. Vibration- based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition [ J ]. Journal of Sound and Vibration, 2008, 313 ( 3 - 5 ) : 560 - 566.
  • 10Aminghafari M, Cheze N, Poggi J M. Multivariate denoising using wavelets and principal component analysis [ J ]. Computational Statistics & Data Analysis, 2006, 50 (9): 2381 - 2398.

同被引文献40

  • 1李惠,周文松,欧进萍,杨永顺.大型桥梁结构智能健康监测系统集成技术研究[J].土木工程学报,2006,39(2):46-52. 被引量:143
  • 2杨海峰,吴子燕,吴丹.基于加速度频率响应函数的结构损伤测量方法研究[J].振动与冲击,2007,26(2):90-92. 被引量:8
  • 3郭敬,董彦良,赵克定,于金盈.基于混合优化策略的自回归—滑动平均模型建模[J].机械工程学报,2007,43(4):229-233. 被引量:4
  • 4王建宏.基于先进辨识的控制策略研究及其应用[D].南京:南京航空航天大学,2010:13-18.
  • 5Pintelon R, Schoukens J. System identification: a frequency domain approach [ M]. New York: IEEE Press, 2001.
  • 6Soderstorn T, Mossberg M. Accuracy analysis of a covariance matching approach for identify errors in variables systems [ J]. Automatica, 2011,47( 1 ) : 272 - 282.
  • 7Pintelon R, Schoukens J. Frequency domain maximum likelihood estimation of linear dynamic errors-in-variables models[J]. Automatica, 2007, 43(2) : 621 -630.
  • 8Pillonetto G. A new kernel based approach for linear system identification[ J]. Automatiea, 2010, 46( 1 ) : 81 -93.
  • 9Pacletti S. On the input-output representation of piecewise affine state space models [ J ]. IEEE Transactions of Automatic Control, 2010, 55 ( 1 ) : 60 - 73.
  • 10Hjalmarssion H. A geometric approach to variance analysis in system identification [ J ]. IEEE Transactions of Automatic Control, 2011, 56(5) : 983 -997.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部