摘要
The formation processes of a composite ceramic coating on AM50 magnesium alloy prepared by plasma electrolytic oxidation (PEO) in a K 2 ZrF 6 electrolyte solution were studied by scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX). Electrochemical impedance spectroscopy (EIS) tests were used to study the variation of the corrosion resistance of the coating during the PEO treatment. The results show that the coating formed on Mg alloy is mainly composed of MgO and MgF 2 when the applied voltage is lower than the sparking voltage, and zirconium oxides start to be deposited on Mg substrate after the potential exceeding the sparking voltage. The corrosion resistance of the coating increases with increasing the applied voltage.
采用扫描电镜(SEM)和电子衍射能谱(EDX)研究在含K2ZrF6的溶液中AM50镁合金表面复合微弧体氧化涂层的形成过程。采用电化学阻抗谱(EIS)研究在微弧体氧化制备膜层过程中膜层耐腐蚀性能的变化。结果表明:当电压小于起弧电压时,合金表面膜层的主要成分为MgO和MgF2;当施加电压超过起弧电压时,锆氧化物开始在合金表面沉积,且膜层的耐腐蚀性随着电压的升高而提高。
基金
Project(2007CB613705)supported by the National Basic Research Program of China
Project(50901082)supported by the NationalNatural Science Foundation of China