摘要
作者考虑了α-次预解算子族(1<α<2)在有界扰动下的性质保持,证明在适当条件下扰动α-次预解算子族继承了原有预解族的范数连续性,紧性以及可微性.
This paper is concerned with property persistence of α-times resolvent operator families (1〈α〈2) under bounded perturbation. Under some conditions, it is showed that the perturbed α-times re- solvent operator family inherits the norm continuity, compactness and differentiability.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第3期515-518,共4页
Journal of Sichuan University(Natural Science Edition)
关键词
α-次预解算子族
有界扰动
范数连续性
紧性
可微性
α-times resolvent operator families, bounded perturbation, norm continuity, compactness, differentiability.