期刊文献+

PTZ视频监控的大场景形成方法研究 被引量:1

The formation approach of wide-area scene in PTZ video surveillance
原文传递
导出
摘要 针对PTZ摄像机跟踪监控系统,提出一种基于关键帧和S.peeded Up Robust Features(SURF)特征的图像拼接方法,以构建大的监控场景.利用局部梯度极值平均法对监控视频各帧的清晰度进行评价,剔除模糊帧,选择若干清晰帧作为关键帧进行拼接,以提高大场景的形成速度和准确度.对于图像拼接,采用效果近似于Scale Invariant Feature Transform(SIFT)方法,但计算量更小、速度更快的SURF方法来提取特征点、寻找匹配点对,并结合RANSAC和L-M算法求图像间的变换关系.实验表明,相对于SIFT特征,SURF特征大大提高了图像拼接速度和精度,且具有较高的鲁棒性.该方法在满足实时性的要求下,很好地构建了大场景图像. In order to build a wide-area scene for video surveillance, a background mosaicing method based on key frames and SURF features was proposed. Fuzzy frames were eliminated through evaluating image sharpness with local maximum gradient average value. In this way, the accumulated error genera- ted during sequence rnasaicing was decreased. Simultaneity, the speed of wide-area scene formation was enhanced by reducing the number of frames. For image mosaicing, the algorithm of SURF with less op- erations and higher speed than SIFT was adopted to extract features and find matched features, then the mapping relationship between images could be acquired accurately using RANSAC and L-M algorithms. Experimental results show that the precision and speed of SURF were better than SIFT, as well as robust. This method could meet the needs of real-time property and build the wide-area scene scanned by the PTZ camera excellently.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期577-583,共7页 Journal of Sichuan University(Natural Science Edition)
基金 教育部科学技术研究重点项目资金(107094)
关键词 大场景 视频拼接 SURF特征 关键帧 wide-area scene, video mosaicing, SURF features, key frame
  • 相关文献

参考文献7

  • 1Lowe D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91.
  • 2Bay H,Ess A,Tuytelaars T.SURF:speeded up robust features[J].Computer Vision and Image Urderstomding,2008,110(3):346.
  • 3Wang H,MERSEREAURM.Fast algorithm for the estimation of motion vectors[J].IEEE Transactions on Image Processing,1999,8(3):435.
  • 4Marko H,Matti P.An image mosaicing module for widearea surveillance[J].Proceedings of the Third ACM International Workshop on Video Surveillance & Sensor Network,2005,11(11):11.
  • 5樊庆文,王小龙,侯力,黄成祥.基于等距序列图像的快速拼接技术[J].四川大学学报(工程科学版),2005,37(1):139-142. 被引量:14
  • 6尹德辉,李炳法,唐燕.基于小波变换的最佳融合算法[J].四川大学学报(自然科学版),2007,44(6):1205-1209. 被引量:7
  • 7张朝伟,周焰,吴思励,林洪涛.基于SIFT特征匹配的监控图像自动拼接[J].计算机应用,2008,28(1):191-194. 被引量:39

二级参考文献17

  • 1尹德辉,李炳法,唐燕.一种高度容错和精确识别的数字水印算法[J].四川大学学报(工程科学版),2005,37(6):107-112. 被引量:3
  • 2Bao Paul, Xu Dan. Complex wavelet-based image mosaic using edge-preserving visual perception modeling[J]. The Computer & Graphics, 1999,23 : 309 - 321.
  • 3Szeliski R. Image mosaicing for tele-reality applications [ J]. IEEE Computer Graphics and Applications, 1994, 14(6) :44-53.
  • 4PEREZ P, GARCIA N. Robust and accurate registration of images. with unknown relative orientation and exposure [ C]//Proceedings of the 2005 International Conference on Image Processing (ICIP 2005). Genoa: IEEE Press, 2005, 3.
  • 5LOWED G. Object recognition from local scale invariant features [ C] // Proceedings of the Seventh International Conference on Computer Vision (ICCV'99). Amsterdam: [ s. n. ], 1999.
  • 6LOWED G. Distinctive image features from scale-invariant key- points [ J]. International Journal of Computer Vision, 2004, 60(2) : 91 -110.
  • 7MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[ J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005, 27(10) : 1615 - 1630.
  • 8FISHCHLER M A. Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography [ J]. Communication AssOciation Machine, 1981, 24(6) : 381 - 395.
  • 9KOENDERINK J J. The structure of images [ J]. Biological Cybernetics, 1984, 50(5) : 363 -396.
  • 10LINDEBERG T . Scale - space theory : A basic tool for analysing structures at different scales [ J]. Journal of Applied Statistics, 1994, 21(2) : 224 -270.

共引文献57

同被引文献16

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部