期刊文献+

学习算法的稳定性与泛化(Ⅱ):有界差分稳定框架 被引量:1

Stability and generalization of the learning algorithm(Ⅱ):the framework of the bounded-difference stability
下载PDF
导出
摘要 根据有界差分条件,提出了学习算法的有界差分稳定框架.依据新框架,研究了机器学习阈值选择算法,再生核Hilbert空间中的正则化学习算法,Ranking学习算法和Bagging算法,证明了对应学习算法的有界差分稳定性.所获结果断言了这些算法均具有有界差分稳定性,从而为这些算法的应用奠定了理论基础. The bounded-difference stability framework of the learning algorithms is proposed in this paper based on the bounded difference condition.Under the new framework,the machine learning threshold selection algorithm,regularization algorithms in the reproducing kernel Hilbert space (RKHS),the Ranking algorithm and the Bagging algorithm are studied,and the bounded-difference stability properties of these learning algorithms are proved in this paper.The results show that these algorithms have the bounded-difference stability properties,and thus establish the theoretical principles for the applications of these algorithms.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2011年第1期1-11,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家重点基础研究计划(973)(2007CB311002) 国家自然科学基金(60975036) 陕西省教育厅科研计划(08Jk473)
关键词 学习理论 稳定性 泛化性 有界差分稳定 learning theory stability generalization bounded-difference stability
  • 相关文献

参考文献21

  • 1Vapnik V,Chervonenkis A.The necessary and sufficient conditions for consistency in the empirical risk minimization method[J].Pattern Recognition and Image Analysis,1991,1(3):283-305.
  • 2Vapnik V.Statistical Learning Theory[M].New York:Wiley,1998.
  • 3Alon N,Ben-David S,Cesa-Bianchi N,et al.Scale-sensitive dimensions,uniform convergence,and learn ability[J].Journal of the Association for Computing Machinery,1997,44(4):615-631.
  • 4Dudley R.Uniform Central Limit Theorems[M].Cambridge:Cambridge University Press,1999.
  • 5Dudley R,Giné E,Zinn J.Uniform and universal Glivenko-Cantelli classes[J].Journal of Theory Probability,1991,4:485-510.
  • 6Cuker F,Smale S.On the mathematical foundations of learning[J].Bulletin of the American Mathematical Society,2002,39:1-49.
  • 7Poggio T,Smale S.The mathematics of learning:dealing with data[J].Notices of the American Mathematical Society,2003,50:537-544.
  • 8Devroye L P,Wagner T J.Distribution-free performance bounds for potential function rules[J].IEEE Transanction on Information Theory,1979,25(5):601-604.
  • 9Kearns M,Ron D.Algorithmic stability and sanity check bounds for leave one out cross validation bounds[J].Neural Computation,1999,11(6):1427-1453.
  • 10Bousquet O,Elisseeff A.Stability and generalization[J].Journal of Machine Learning Research,2002,2:499-526.

二级参考文献24

  • 1Vapnik V., Statistical Learning Theory, New York: Wiley, 1998.
  • 2Cuker F.,.Smale S., On the mathematical foundations of learning, Bulletin Amer. Math. Soc., 2002, 39: 1-49.
  • 3Poggio T., Smale S., The mathematics of learning: dealing with data, Notices Amer. Math. Soc., 2003, 50: 537-544.
  • 4Devroye L. P., Wagner T. J., Distribution-free performance bounds for potential function rules, IEEE Trans. Inform. Theory, 1979, 25(5): 601-604.
  • 5Kearns M., Ron D., Algorithmic stability and sanity check bounds for leave one out cross validation bounds, Neural Computation, 1999, 11(6): 1427-1453.
  • 6Bousquet O:, Elisseeff A., Stability and generalization, Journal of Machine Learning Research, 2002, 2: 499- 526.
  • 7Kutin S., Niyogi P., Almost-Everywhere Algorithmic Stability and Generalization Error, University of Chicago, Technical Report TR-2002-03, 2002.
  • 8Poggio T., Rifkin R., Mukherjee S., et al., Learning Theory: general conditions for predictivity, Nature, 2004, 428: 419-422.
  • 9Mcdiarmid C., On the Method of Bounded Differences, IN Surveys in Combinatorics, Cambridge: Cambridge Univ. Press, 1989, 148-188.
  • 10Mcdiarmid C., Concentration, In Probabilistic Methods for Algorithmic Discrete Mathematics, New York: Springer, 1998, 195-248.

共引文献2

同被引文献3

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部