摘要
研究了三角代数上的零点ξ-Lie可导映射,证明了三角代数U上的每一个零点ξ-Lie(ξ≠1)可导映射δ都具有形式T→d(T)+δ(I)T,其中d:U→U是一个可加导子.作为应用,得到:上三角块矩阵代数T上的零点ξ-Lie(ξ≠1)可导映射具有形式T→TS-ST+Td+λT,其中S∈T,λ∈F,d是F上的可加导子且Td=(d(tij));套代数AlgN上的零点ξ-Lie(ξ≠1)可导映射具有形式T→TS-ST+λT,其中S∈AlgN,λ∈F.
The maps on triangular algebras which are ξ-Lie derivable at zero are disscussed.It is proved that every map δ on a triangular algebra U which is ξ-Lie derivable at zero with ξ≠1 has the form T→d(T)+δ(I)T,where d:U→U is an additive derivation.As applications,it is shown that a map on the upper triangular block matrix algebra T which is ξ-Lie derivable at zero with ξ≠1 has the form T→TS-ST+Td+λT,where S∈T,λ∈F,d is an additive derivation and Td=(d(tij));a map on the nest algebra Alg N which is ξ-Lie derivable at zero with ξ≠1 has the form T→TS-ST+λT,where S∈Alg N,λ∈F.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第3期15-19,共5页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(10971123)
陕西省自然科学研究计划资助项目(2004A17)