期刊文献+

三角代数上的零点ξ-Lie可导映射 被引量:3

ξ-Lie derivable maps at zero point on triangular algebras
下载PDF
导出
摘要 研究了三角代数上的零点ξ-Lie可导映射,证明了三角代数U上的每一个零点ξ-Lie(ξ≠1)可导映射δ都具有形式T→d(T)+δ(I)T,其中d:U→U是一个可加导子.作为应用,得到:上三角块矩阵代数T上的零点ξ-Lie(ξ≠1)可导映射具有形式T→TS-ST+Td+λT,其中S∈T,λ∈F,d是F上的可加导子且Td=(d(tij));套代数AlgN上的零点ξ-Lie(ξ≠1)可导映射具有形式T→TS-ST+λT,其中S∈AlgN,λ∈F. The maps on triangular algebras which are ξ-Lie derivable at zero are disscussed.It is proved that every map δ on a triangular algebra U which is ξ-Lie derivable at zero with ξ≠1 has the form T→d(T)+δ(I)T,where d:U→U is an additive derivation.As applications,it is shown that a map on the upper triangular block matrix algebra T which is ξ-Lie derivable at zero with ξ≠1 has the form T→TS-ST+Td+λT,where S∈T,λ∈F,d is an additive derivation and Td=(d(tij));a map on the nest algebra Alg N which is ξ-Lie derivable at zero with ξ≠1 has the form T→TS-ST+λT,where S∈Alg N,λ∈F.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期15-19,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10971123) 陕西省自然科学研究计划资助项目(2004A17)
关键词 三角代数 ξ-Lie可导映射 可加导子 triangular algebra ξ-Lie derivable map additive derivation
  • 相关文献

参考文献3

二级参考文献35

  • 1Zhu J., Generalized derivable mappings at the point zero on nest algebras, Acta Mathematica Sinica, Chinese Series, 2002, 45(4): 783-788.
  • 2Jing W., Lu S., Li P., Characterisations of derivations on some operator algebras, Bull. Austral. Math. Soc., 2002, 66: 227-232.
  • 3Li J., Pan Z., Xu H., Characterizations of isomorphisms and derivations of some algebras, J. Math. Anal. Appl., 2007, 332:1314-1322.
  • 4Zhu J., Xiong C. Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl., 2005, 397: 367-379.
  • 5Zhu J., Xiong C., Derivable mappings at unit operator on nest algebras, Linear Algebra Appl., 2007, 422: 721-735.
  • 6Li P., Ma J., Derivations, local derivations and atomic Boolean subspace lattices, Bull. Austral. Math. Soc., 2002, 66: 477-486.
  • 7Johnson B. E., Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., 1996, 120: 455-473.
  • 8Cheung W. S., Lie derivation of triangular algebras, Linear and Multilinear Algebra, 2003, 51: 299-310.
  • 9Mathieu M., Villen.a A. R., The structure of Lie derivations on C^* algebras, J. Funct. Anal., 2003, 202: 504-525.
  • 10Zhang J., Lie derivations on nest subalgebras of von Neumann algebras, Acta Mathematica Sinica, Chinese Series, 2003, 46(4): 657-664.

共引文献13

同被引文献29

  • 1AN Runling,HOU Jinchuan.Characterizations of derivations on tringular ring:Additive maps derivable at idempotents[J].Linear Algebra and its Applications,2009,431:1 070-1 080.
  • 2HOU Jinchuan,AN Runling.Additive maps behaving like derivations at idempotent-product element[J].Journal ofPure and Applie Algebra,2011,215:1 852-1 862.
  • 3ZHU Jun,XIONG Changping.Derivable mapping at unite operator on nest algebras[J].Linear Algebra and its Applica-tions,2007,422:721-735.
  • 4HOU Jinchuan,QI Xiaofei.Additive maps derivable at some points on J-subspace algebras[J].Linear Algebra and itsApplications,2008,429:1 851-1 863.
  • 5HOU Jinchuan,QI Xiaofei.Characterizations of derivations of Banach space nest algebras:full-derivable points[J].Linear Algebra and its Applications,2010,432:3 183-3 200.
  • 6LI Jiankui,PAN Zhidong.On derivable mappings[J].Journal of Mathematical Analysis and Applications,2011,374:311-322.
  • 7QI Xiaofei,CUI Jianlian,HOU Jinchuan.Characterizing additiveξ-Lie derivations of prim algebras byξ-Lie zero prod-ucts[J].Linear Algebra and its Applications,2011,434:669-682.
  • 8QI Xiaofei,HOU Jinchuan.Additive Lie(ξ-Lie)derivations and generalized Lie(ξ-Lie)derivations on nest algebras[J].Linear Algebra and its Applications,2009,431:843-854.
  • 9ZHANG Jianhua.Jordan derivations of nest algebras[J].Acta Mathematics Sinica,1998,41:205-212.
  • 10Bresusar M. Characterizing homomorphisms, multipli- ers and derivations in rings with idempotents[J]. Pro- ceedings of the Royal Society of Edinburgh, Section: A, 2007,137: 9-21.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部