摘要
运用初等数论中的同余理论以及组合方法讨论了方程(x3-1λ)/(x-1λ)=(yn-2λ)/(y-2λ)适合x>y>1,n>3且2■的整数解(x,y,n,1λ,2λ),1λ、2λ∈{±1}.证明了:该方程仅有解(x,y,n,1λ,2λ)=(5,2,5,1,1)和(7,2,7,-1,-1)可使x是素数或者素数的方幂.
Let λ1,λ2∈{±1}.Using congruent theory in elementary number theory and combinational method,the integer solutions(x,y,n,λ1,λ2) of the equation(x3-λ1)/(x-λ1)=(yn-λ2)/(y-λ2) satisfying xy1,n3 and 2 n are discussed.It is proved that the equation has only the solutions(x,y,n,λ1,λ2)=(5,2,5,1,1) and(7,2,7,-1,-1) with x is a prime or a prime power.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第3期20-22,共3页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11071194)