摘要
论文使用高分辨有限体积法模拟二维声波在多层介质中的传播现象.该方法需要求解双曲型偏微分方程的黎曼解,数值解在强速度变化的分界面上满足数值通量守恒,可以有效地计算数值解的不连续性.根据数值实验给出的波场快照和接收点上的波形变化,可以清晰地观察到声波在介质分界面上的多次反射波,说明该方法不但可以得到高分辨率的波场快照,而且有效地避免了数值频散.
In this paper, we use high-resolution finite volume method simulation wave propagation for 2D acoustic wave equation in the multi-layers media. High-resolution finite volume method need solve Riemann problem for hyperbolic equations, whose solutions have realized numerical fluxes conservation on the interfaces withhigh velocity contrat, so that discontinuous solutions can be effictively computed. We can clearly observe reflection wave and re- reflection wave in the interfaces based on the numerical experiments given the snapshots of the wave-field. Therefore, the numerical method can obtain the high-resolution snapshots of wave-field, and effectively control the numerical dispersive.
出处
《地球物理学进展》
CSCD
北大核心
2011年第2期557-564,共8页
Progress in Geophysics
基金
国家自然科学基金项目(10572072)
国家重点基础研究发展计划(973)(2007CB209505)资助
关键词
高分辨算法
变系数双曲方程
有限体积法
声波方程
high-resolution algorithm, variable-coefficent hyperbolic equation, finite volume method, acoustic wave equation