摘要
The morphology, pore architecture and crystallinity of the mesoporous 1,4-phenylene-silicas were controlled using the mixtures of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). When the SDS/CTAB molar ratio increased from 0 to 1.0, the morphology of the mesoporous 1,4-phenylene-silicas changed in a sequence of sphere, hexagonal short rod, worm-like, bent flake and flower-like structure; the pore architecture of them changed from a hexagonal arranged tubular structure to a lamellar one; and the organization of the smallest repeat units within the wall changed from a random structure to a crystalline structure. At the SDS/CTAB molar ratios of 0.3 and 0.5, 1,4-phenylene-silica nanofibers with lamellar mesopores outside and tubular pore channels inside were obtained. The lamellar mesopores should be formed by merging the rod-like micelles during the reaction process.
The morphology, pore architecture and crystallinity of the mesoporous 1,4-phenylene-silicas were controlled using the mixtures of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). When the SDS/CTAB molar ratio increased from 0 to 1.0, the morphology of the mesoporous 1,4-phenylene-silicas changed in a sequence of sphere, hexagonal short rod, worm-like, bent flake and flower-like structure; the pore architecture of them changed from a hexagonal arranged tubular structure to a lamellar one; and the organization of the smallest repeat units within the wall changed from a random structure to a crystalline structure. At the SDS/CTAB molar ratios of 0.3 and 0.5, 1,4-phenylene-silica nanofibers with lamellar mesopores outside and tubular pore channels inside were obtained. The lamellar mesopores should be formed by merging the rod-like micelles during the reaction process.
基金
Project supported by the Program of Innovative Research Team of Soochow University, Program for New Century Excellent Talents in University (No. NCET-08-0698) and the National Natural Science Foundation of China (No. 20871087).