期刊文献+

锑矿区水体水环境锑污染及硫同位素示踪研究 被引量:19

Antimony Pollution and Sulfur Isotope Study in the Waters of an Antimony Mine area
下载PDF
导出
摘要 本文系统研究了贵州省半坡锑矿区水环境锑污染现状,用硫同位素指示采矿活动对矿区水体的影响,以查明锑矿区水环境中Sb的释放迁移过程和水污染程度。研究发现,矿区水体中Sb和SO42-含量分别高达1377μg/L和1926 mg/L;岔河下游近10 km处仍保持较高水平(182.5μg/L Sb和59.8 mg/L SO42-)。岔河水体中,δ34S-Sb、δ34S-SO42-和Sb-SO42-间均具显著正相关,相关系数分别为r=0.68(p<0.05)、r=0.89(p<0.01)、r=0.72(p<0.05)。表明岔河水体中,δ34S和SO42-能很好地指示矿业活动引起的Sb污染程度和扩散范围。根据同位素质量平衡原理估算,发现矿区下游水体中的硫主要来自矿山,表明矿区下游水体污染受采矿活动影响显著。 This study investigated the pollution state of antimony in the waters of an antimony mine located in Banpo,Guizhou Province,and traced the pollutants using sulfur isotope.The main goals of this study are to clear the geochemical progresses controlling the fate and the transfer of antimony and to better understand the current pollution state of the rivers in this antimony mine area.The results showed that the waters are suffering from serious pollution with Sb and SO2-4 concentrations being up to 1377 μg/L and 1926 mg/L,respectively.The downstream water of the Chahe River,10 km away from the mine area,still contains high concentrations of Sb and SO2-4.In Chahe River,δ34S-Sb,δ34S-SO2-4 and Sb-SO2-4 are remarkably positively correlated,the correlation coefficients are r=0.68(p0.05),r=0.89(p0.01) and r=0.72(p0.05),respectively.These positive correlations suggest that δ34S in the dissolved sulfate and the concentration of SO2-4 can well reflect the water pollution state and the diffusion distance of antimony in the Chahe River.According to the calculation of isotope mass balance,the sulfur in the downstream of the mine area are mainly form antimony deposit,which implies that the water quality in the mine area is significantly affected by mining activities.
出处 《矿物岩石地球化学通报》 CAS CSCD 北大核心 2011年第2期135-141,共7页 Bulletin of Mineralogy, Petrology and Geochemistry
基金 中国科学院知识创新工程重要方向项目(kzcx2-yw-135) 国家重点基础研究发展计划项目(2009CB426307) 国家自然科学基金资助项目(40773072) 贵州省科学技术基金项目(黔科合J字[2010]2235号)
关键词 矿山 水污染 硫同位素 mine antimony water pollution sulfur isotope
  • 相关文献

参考文献21

  • 1Shotyk W, Krachler M, Chen B. Antimony: Global environ mental eontaminant[J]. J. Environ. Monitor., 2005, 7( 12): 1135- 1136.
  • 2Maher WA. Antimony in the Environment-the New Global Puzzle[J]. Environ. Chem. , 2009, 6: 93--94.
  • 3Filella M, Belzile N, Chen Y W. Antimony in the Environment:A Review focused on Natural Waters: I. Occurrence [J]. Earth Sci. Rev., 2002, 57(1- 2): 125 -176.
  • 4Ashley P M, Craw D, Graham B P, Chappell D A. Environ mental mobility of antimony around Mesothermal Stibnite Deposits, New South Wales, Australia and Southern New Zealand[J]. J. Geochem. Explor. ,2003, 77(1): 1--14.
  • 5宁增平,肖唐付,周连碧,贾彦龙,孙嘉龙,何立斌,杨菲,李航,彭景权.锑矿区酸性岩排水产生潜力预测研究[J].地球与环境,2009,37(3):249-253. 被引量:7
  • 6Robinson B W, Bottrell S H. Discrimination of Sulfur sources in pristine and polluted New Zealand River catchments using stable isotopes[J]. Appl. Geochem. , 1997, 12 (3) : 305-319.
  • 7Stuben D, Berner Z, Kappes B, PucheIt H. Environmental monitoring of heavy metais and arsenic from Ag-Pb-Zn mining [J]. Environ. Monit. Assess., 2001, 70(1): 181--200.
  • 8Sueker J K. Isotope appl.ications in environmental investigations part II : Groundwater age dating and recharge processes, and provenance of sulfur and methane[J].Reined. J. , 2003, 13(2) ; 71-90.
  • 9Moncaster S J, Bottrell S H, Tellam J H, Lloyd J W, Konhauser K O. Migration and attenuation of agrochemical pollutants: insights fromisotopie analysis of groundwater sulphate [J].J. Contain. Hydrol , 2000, 43(2): 147--163.
  • 10Gray N F. Field assessment of acid mine drainage contamination in surface and ground water[J]. Environ. Geol. , 1996, 27(4) : 358-361.

二级参考文献48

共引文献69

同被引文献217

引证文献19

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部