期刊文献+

Potential Distribution on Random Electrical Networks

Potential Distribution on Random Electrical Networks
原文传递
导出
摘要 Let N = (G, c) be a random electrical network obtained by assigning a certain resistance for each edge in a random graph G ∈ G(n, p) and the potentials on the boundary vertices. In this paper, we prove that with high probability the potential distribution of all vertices of G is very close to a constant. Let N = (G, c) be a random electrical network obtained by assigning a certain resistance for each edge in a random graph G ∈ G(n, p) and the potentials on the boundary vertices. In this paper, we prove that with high probability the potential distribution of all vertices of G is very close to a constant.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第3期549-559,共11页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (No.10531070 and 1091137) National Basic Research Program of China 973 Program (No. 2006CB805900) a grant of Science and Technology Commission of Shanghai Municipality (STCSM, No. 09XD1402500)
关键词 Electrical network potential distribution random graphs Electrical network, potential distribution, random graphs
  • 相关文献

参考文献20

  • 1Barabasi, A.L., Albert, R. Emergence of scaling in random networks. Science, 286:509-512 (1999).
  • 2Bollobas, B. Random Graphs, 2nd edn. Cambridge University Press, 2001.
  • 3Bollobas, B. Modern Graph Theory. Springer-Verlag, New York, 1998.
  • 4Bollobas, B., Fenner, T., Frieze, A.M. An algorithm for finding Hamilton paths and cycles in random graphs. Combinatorica, 7:327-341 (1978).
  • 5Cooper C., Frieze, A. The cover time of sparse random graphs. Random Structures and Algorithms, 30: 1-16 (2007).
  • 6Curtis, E.B., Morrow, J.A. The Dirichlet to Neumann map for a resistor network. Journal on Applied Mathematics, 51:1011-1029 (1991).
  • 7Doyle, P.G., Snell, J.L. Random Walks and Electronical Networks, Carus Math. Monogr. Vol 22, Mathe- matical Assoc. of America, Washington, 1984.
  • 8Durrett, R. Random Graph Dynamics, third edn. Cambridge University Press, 2006.
  • 9Griffeath, D., Liggett, T.M. Critical phenomena for Spitzer's reversible nearest particle systems. Ann. Probab., 10:881-895 (1982).
  • 10Grimmett, G., Kesten, H. Random electrical networks on complete graphs. Journal of the London Math- ematical Society, 30:171-192 (1984).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部