期刊文献+

Exact solution for the unsteady flow of a semi-infinite micropolar fluid 被引量:1

Exact solution for the unsteady flow of a semi-infinite micropolar fluid
下载PDF
导出
摘要 The unsteady motion of an incompressible micropolar fluid filling a half-space bounded by a horizontal infinite plate that started to move suddenly is considered. Laplace transform techniques are used. The solution in the Laplace transform domain is obtained by using a direct approach. The inverse Laplace transforms are obtained in an exact manner using the complex inversion formula of the transform together with contour integration techniques. The solution in the case of classical viscous fluids is recovered as a special case of this work when the micropolarity coecient is assumed to be zero. Numerical computations are carried out and represented graphically. The unsteady motion of an incompressible micropolar fluid filling a half-space bounded by a horizontal infinite plate that started to move suddenly is considered. Laplace transform techniques are used. The solution in the Laplace transform domain is obtained by using a direct approach. The inverse Laplace transforms are obtained in an exact manner using the complex inversion formula of the transform together with contour integration techniques. The solution in the case of classical viscous fluids is recovered as a special case of this work when the micropolarity coecient is assumed to be zero. Numerical computations are carried out and represented graphically.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第3期354-359,共6页 力学学报(英文版)
关键词 Unsteady motion . Laplace transform . Microp-olar fluid Unsteady motion . Laplace transform . Microp-olar fluid
  • 相关文献

参考文献2

二级参考文献12

  • 1Shangjun Ye,Keqin Zhu,W. Wang.Laminar flow of micropolar fluid in rectangular microchannels[J].Acta Mechanica Sinica,2006,22(5):403-408. 被引量:8
  • 2Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech.16(1), 1-8 (1966)
  • 3Hogan, H.A., Henriksen, M.: An evaluation of a micropolar model for blood flow through an idealized stenosis. J. Biomech. 22(3), 211-218 (1989)
  • 4Hassanien, I.A., Elhawary,H.M., Salama, A.A.: Chebyshev solution of axisymmetrical stagnation flow on a cylinder.Energy Convers. Manag. 37(1), 67-76 (1995)
  • 5Takhar, H.S,, Bhargava, R., Agarwal, R.S.: Finite element solution of micropolar fluid flow from an enclosed rotating disc with suction and injection. Int. J. Eng. Sci. 39(8), 913-927(2001)
  • 6Knight, J,B., Ehrichs, E.E., Kuperman, V.Y., et al.: Experimental study of granular convection. Phy. Rev. E 54(5), 5726-5738 (1996)
  • 7Mitarai, N., Hayakawa, H., Nakanishi, H.: Collisional granular flow as a micropolar fluid. Phy. Rev. Lett. 88(17), Art. no.174301 (2002)
  • 8Gravesen, P. Branebjerg, J., Jensen, O.S.: Microfluidics-a review. J. Micromech. Microeng. 3(4), 168-182 (1993)
  • 9Koo, J.M., Kleinstreuer, C.: Liquid flow in microchannels:experimental observations and computational analyses of microfluidics effects. J. Micromech. Microeng. 13(5), 568-579(2003)
  • 10Papautsky, I., Brazzle, J., Ameel, T., et al.: Laminar fluid behavior in microchannels using micropolar fluid theory. Sens.Actuators A Phys. 73(1-2), 101-108 (1999)

共引文献10

同被引文献14

  • 1Prof. Dr. Teoman Ariman,Prof. Dr. Ahmet S. Cakmak.Some basic viscous flows in micropolar fluids[J]. Rheologica Acta . 1968 (3)
  • 2T. Ariman,M. A. Turk,N. D. Sylvester. International Journal of Engineering Science . 1974
  • 3J. Dey,,G. Nath. International Journal of Engineering Science . 1983
  • 4G. Dupuv,,G. Panasenko,,R. Stavre. Math. Mod. Meth. Appl. Sci . 2004
  • 5I. Pazanin. Math. Problems in Eng . 2011
  • 6L. Debnath. Acta Mechanica . 1976
  • 7A. Kucaba-Pi?eal. Bull. Pol. Ac. Tech . 2004
  • 8Eringen,A. C. Journal of Mathematics and Mechanics . 1966
  • 9Eringen,A. C. Microcontinuum Field Theories, Vol. I, Foundations and Solids . 1998
  • 10G ?ukaszewicz.Micropolar fluids: theory and application. . 1999

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部