期刊文献+

Oracle安全审计技术设计 被引量:7

Oracle Security Audit Technical Design
下载PDF
导出
摘要 分析了Oracle安全机制,对其安全审计技术进行了研究。Oracle数据库自身没有针对安全审计数据的分析工具,为了改进与完善Oracle当前安全审计机制,采用了数据挖掘技术,将数据挖掘技术应用至Oracle数据库安全审计中来,对数据库的记录特点进行分析,通过审计记录的分析,提出了在序列模式挖掘及关联规则2种技术基础上,建立用户正常行为模式的方法。同时,还建立了针对Oracle的安全审计分析系统,分析审计数据。 This paper analyzes the Oracle of its security,its security audit techniques were studied.Oracle database itself has not addressed the security audit data analysis tools,in order to improve and perfect the current Oracle security audit mechanism,we use data mining technology,data mining technology to the Oracle database security audit,the characteristics of database records for analysis,Through the analysis of audit records,this paper presents in association rule mining and sequential patterns based on two technologies,the establishment of the method of normal user behavior.Meanwhile,the paper also set up for the Oracle security audit analysis system,analyze the audit data.
作者 仝世君
出处 《煤炭技术》 CAS 北大核心 2011年第6期266-267,共2页 Coal Technology
关键词 ORACLE 安全审计 关联规则 序列模式挖掘 Oracle security audit association rules sequential pattern mining
  • 相关文献

参考文献2

二级参考文献15

  • 1[1]K IIgun,et al. State Transition Analysis: A Rule-based Intrusion Detection Approach [ J ]. IEEE Transactions on Software Engineering, 1995,21(3): 181-199.
  • 2[2]S Kumar, et al. A Software Architecture to Support Misuse Instrustion Detection [ C ]. Proceeding of the 18th National Information Security Conference, 1995. 194-204.
  • 3[3]W Lee, et al. Data Mining in Work Flow Environment: Experience in Intrusion Detection[C]. Proceedings of the Conference on Knowledge Discovery and Data Mining( KDD-99), 1999.
  • 4[4]A Ghosh, et al. A Study in Using Neural Networks for Anomaly and Misuse Detecion[C]. In Proceedings of the Eighth USENIX Security Symposium, 1999.
  • 5[5]C Warrender, et al. Detecting Intrusions Using System Calls:Alternative Data Models[ C]. 1999 IEEE Symposium on Security and Privacy, IEEE Computer Society, 1999. 133-145.
  • 6[6]V Barnett,T Lewis. Outliers in Statistical Data[M]. John Wiley and Sons, 1994.
  • 7[7]E Eskin. Signal Detection over Noisy Data Using Learned Probability Distributions [ C ]. Proceeding of the Seventeenth International Confere on Machine Learning(ICML-2000) ,2000.
  • 8[8]W Fan. Cost-senstive, Scalable and Adaptive Learning Using Ensemblebased Methods [ D]. PhD thesis, Columbia University,2001.
  • 9[9]W Fan, et al. A Multiple Model Approach for Cost-sensitive Intrusion Detection [ C ]. Proc 2000 European Conference on Machine Learning, Barcelona, Spain, 2000.
  • 10[10]R Lippmann, et al. Evaluation Intrusion Detection Systems: The 1998 Darpa Off-line Intrusion Detection Evaluation [ C ].Proceedings of the 2000 DARPA Information Survivability Conference and Exposition, 2000.

共引文献27

同被引文献14

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部