期刊文献+

非局部联合稀疏近似的超分辨率重建算法 被引量:7

Super-resolution Reconstruction Algorithm Based on Non-local Simultaneous Sparse Approximation
下载PDF
导出
摘要 该文结合联合稀疏近似和非局部自相似的概念,提出非局部联合稀疏近似的超分辨率重建方法。该方法将输入图像的跨尺度高、低分辨率图像块统一进行联合稀疏编码,建立它们之间的稀疏关联,并将这种关联作为先验知识来指导图像的超分辨率重建。该文方法保证跨尺度自相似集具有相同的稀疏性模式,能更有效地利用图像的自相似性先验信息,提高算法的自适应性。通过自然图像实验,与其它几种基于学习的超分辨率算法对比,超分辨率效果有较好改善。 A novel super-resolution reconstruction method based on non-local simultaneous sparse approximation is presented, which combines simultaneous sparse approximation method and non-local self-similarity. The sparse association between high- and low-resolution patches pairs of cross-scale self-similar sets via simultaneous sparse coding is defined, and the association as a priori knowledge is used for super-resolution reconstruction. This method keeps the patches pairs the same sparsity patterns, and makes efficiently use of the self-similar information. The adaptability is enhanced. Several experiments using nature images show that the presented method outperforms other several learning-based super-resolution methods.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第6期1407-1412,共6页 Journal of Electronics & Information Technology
基金 国家973计划项目(2007CB714406) 国家自然科学基金(40801130)资助课题
关键词 图像处理 超分辨率 联合稀疏近似 非局部 跨尺度 Image processing Super-resolution Simultaneous sparse approximation Non-local Cross-scale
  • 相关文献

参考文献11

  • 1Freeman W T, Jones T R, and Pasztor E C. Example-based super-resolution[J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65.
  • 2Chang H, Yeung D-Y, and Xiong Y. Super-resolution through neighbor embedding[C]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, 2004, 2: 275-282.
  • 3Yang J, Wright J, and Huang T, et al.. Image Super- resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861 2873.
  • 4Ebrahimi M and Vrscay E R. Solving the inverse problem of image zooming using "self-examples"[C]. The International Conference on Image Analysis and Recognition (ICIAR), Montreal, Canada, 2007: 117-130.
  • 5Mairal J, Bach F, and Ponce J, et al.. Non-local sparse models for image restoration[C]. The IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, 2009:2272 2279.
  • 6Tropp J A and Wright S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, Special Issue on Applications of Sparse Representation and Compressive Sensing, 2010, 98(6): 948-958.
  • 7Tropp J A, Gilbert A C, and Strauss M J. Algorithms for simultaneous sparse approximation, part I: greedy pursuit [J]. Signal Processing, Sparse Approximations in Signal and Image Processing, 2006, 86(3): 572 588.
  • 8Rubinstein R, Bruckstein A M, and Elad M. Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE Applications of Sparse Representation and Compressive Sensing, 2010, 98(6): 1045-1057.
  • 9Mairal J, Bach F, and Ponce J, et al.. Online dictionary learning for sparse coding[C]. International Conference on Machine Learning (ICML), Montreal, Canada, 2009: 689 696.
  • 10Mairal J, Elad M, and Sapiro G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008, 17(1): 53-69.

同被引文献64

  • 1许录平,姚静.一种图像快速超分辨率复原方法[J].西安电子科技大学学报,2007,34(3):382-385. 被引量:8
  • 2Park S C, Park M K, and Kang M G. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36.
  • 3Freeman W T, Jones T R, and Pasztor E C. Example-based super-resolution[J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65.
  • 4Glasner D, Bagon S, and Irani M. Super-resolution from a single image[C]. IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 349-356.
  • 5Chan T M, Zhang J, Pu J, et al.. Neighbor embedding based super-resolution algorithm through edge detection and feature selection[J]. Pattern Recognition Letters, 2009, 30(5): 494-502.
  • 6Yang J, Wright J, Huang T, et al.. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
  • 7Wu W, Liu Z, and He X. Learning-based super resolution using kernel partial least squares[J]. Image and Vision Computing, 2011, 29(6): 394-406.
  • 8Rosipal R and KrtLmer N. Overview and recent advances in partial least squares[J]. Lecture Notes in Computer Science, 2006, 3940: 34-51.
  • 9Chen S, Wang J, Ouyang Y, et al.. Boosting part-sense multi-feature learners toward effective object detection[J]. Computer Vision and Image Understanding, 2011, 115(3): 364-374.
  • 10Chang C C. A boosting approach for supervised Mahalanobis distance metric learning[J]. Pattern Recognition, 2012, 45(2): 844-862.

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部