期刊文献+

L-谷氨酸钠对酸胁迫下短乳杆菌NCL912蛋白表达的影响 被引量:1

Effect of Sodium L-Glutamate on Protein Expression ofγ-Aminobutyric Acid-Producing Lactobacillus brevis NCL912 under Acid Stress
下载PDF
导出
摘要 从蛋白质组学水平,对高产γ-氨基丁酸短乳杆菌NCL912在酸胁迫应激过程中菌体蛋白质的变化,以及L-谷氨酸钠对酸胁迫下该菌差异蛋白的表达和功能的影响进行分析和比较。凝胶电泳和质谱分析结果表明,在酸胁迫条件下,未添加L-谷氨酸钠的培养基培养的短乳杆菌NCL912有25个差异表达蛋白,其中8个蛋白点得到了鉴定;而添加L-谷氨酸钠的培养基培养的该菌有26个差异表达蛋白,其中11个蛋白点得到了鉴定。对两组样品中鉴定的蛋白质功能进行分析比较,发现在酸胁迫条件下,无论是否添加底物氨基酸,该菌都会启动一些共同的应激过程来保护自身,如蛋白质的合成、糖代谢及应激蛋白表达量的变化等。而外源氨基酸的添加可能会诱导某些与细胞生物膜及信号转导有关的蛋白表达发生改变,从而有利于细胞能够在酸性环境中生存和生长。这表明酸胁迫应激过程是一个复杂的网络调控体系,不仅与外部氨基酸的添加有关,还涉及到菌体内部其他蛋白质的变化。 Lactobacillus brevis NCL912 is aγ-aminobutyric acid-producing strain isolated from fermented vegetables.In the present study,protein expression in Lb.brevis NCL912 was investigated at the proteomic level and the effect of sodium L-glutamate(L-MSG) on protein expression was also explored under acid stress by two-dimensional gel electrophoresis,mass spectroscopy and bioinformatics.Eleven spots of 26 differential expressed proteins from the culture with L-MSG and 8 spots of 25 proteins from the culture without L-MSG were identified.The results showed that Lb.brevis NCL912 might launch the common acid resistance systems such as protein synthesis,glycometabolism and stress proteins to protect the cells against acid stress,which was irrelevant to L-glutamate.Meanwhile,exogenous amino acids might change the expression of some of the proteins which were involved in cell membrane formation and signal transduction in media with L-glutamate,thus benefiting the survival and growth of the cells.Therefore,the acid resistance-responsive system is a very complex network system,which is related to not only exogenous amino acids,but also the expression of bacterial proteins.
出处 《食品科学》 EI CAS CSCD 北大核心 2011年第11期181-186,共6页 Food Science
关键词 短乳杆菌NCL912 L-谷氨酸钠 蛋白质组 酸胁迫 Lactobacillus brevis NCL912 sodium L-glutamate proteomics acid stress
  • 相关文献

参考文献34

  • 1KIM H W, KASHIMA Y, ISHIKAWA K, et al. Purification and characterization of the fwst archaeal glutamate decarboxylase from Pyrococcus horikoshii[J]. Biosci Biotechnol Biochem, 2009, 73(1): 224-227.
  • 2INOUE Y, ISHII K, MIYAZAKI M, et al. Purification of L-glutamate decarboxylase from monkey brain[J]. Biosci Biotechnol Biochem, 2008, 72(9): 2269-2276.
  • 3YOKOYAMA S, HIRAMATSU J, HAYAKAWA K. Production of r- aminobutyric acid from alcohol distillery lees by Lactobacihs brevis IFO-12005[J]. J Biosci Bioeng, 2002, 93(1): 95-97.
  • 4HAYAKAWA K, KIMURA M, KASAHA K, et al. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats[J]. Br J Nutr, 2004, 92(3): 411-417.
  • 5SIRAGUSA S, de ANGELIS M, DI CAGNO R, et al. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses[J]. Appl Environ Microbiol, 2007, 73(22): 7283-7290.
  • 6KOMATSUZAKI N, NAKAMURA T, KIMURA T, et al. Characterization of glutamate decarboxylase from a high garnma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei[J|. Biosci Biotechnol Biochem, 2008, 72(2): 278-285.
  • 7SMALL P L, WATERMAN S R. Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli[J]. Trends Microbiol, 1998, 6(6): 214-216.
  • 8SHELP B J, BOWN A W, McLEAN M D. Metabolism and functions of gamma-aminobutyric acid[J]. Trends Plant Sci, 1999, 4(11): 446-452.
  • 9黄桂东,李超波,曹郁生.短乳杆菌NCL912耐酸性研究[J].食品与发酵工业,2010,36(12):59-63. 被引量:3
  • 10黄桂东,钟先锋,李超波,曹郁生.酸胁迫下短乳杆菌NCL912蛋白质的差异表达及其作用[J].微生物学报,2011,51(2):241-248. 被引量:4

二级参考文献31

  • 1Richard H, Foster JW. Escherichia coli glutamate-and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. The Journal of Bacteriology, 2004,186 ( 18 ) : 6032-6041.
  • 2Presser KA, Ratkowsky DA, Ross T. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appled and Environmental Microbiology, 1997,63 ( 6 ) :2355-2360.
  • 3Lee K, Lee HG, Pi K, Choi YJ. The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri. Proteomics, 2008, 8 ( 8 ) : 1624-1630.
  • 4Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek, 2002, 82 (1-4) : 187-216.
  • 5Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R , Weiss W . The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21 ( 6 ) : 1037-1053.
  • 6Sousa MC, McKay DB. Structure of the universal stress protein of Haemophilus influenzae. Structure, 2001, 9 (12) :1135-1141.
  • 7Persson O ,Valadi A, Nystr? m T, Farewell A. Metabolic control of the Escherichia coli universal stress protein response through fructose-6-phosphate. Molecular Microbiology ,2007,65 (4) :968-978.
  • 8Shih C J, Lai MC. Differentially expressed genes after hyper- and hypo-salt stress in the halophilic archaeon Methanohalophilus portucalensis. Canadian Journal of Microbiology,2010,56 (4) :295-307.
  • 9Bouchal P, Struharova I, Budinska E, Sedo O, Vyhlidalova T, Zdrahal Z, van Spanning R, Kucera I. Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach. Biochimcal et Biophysica Acta, 2010, 1804 ( 6 ) : 1350- 1358.
  • 10Spaniol V, Troller R, Aebi C. Physiologic cold shock increases adherence of Moraxella catarrhalis to and secretion of interleukin 8 in human upper respiratory tract epithelial cells. The Journal of Infectious Diseases ,2009, 200 ( 10 ) : 1593 -1601,.

共引文献4

同被引文献26

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部