期刊文献+

非周期Dirac方程的稳态解 被引量:3

Stationary solutions of non-periodic Dirac equations
原文传递
导出
摘要 本文研究Dirac方程-iΣαkku+aβu+M(x)u=g(x,|u|)u的解,其中M(x)是位势函数,g(x,|u|)u在无穷远处关于u是超线性的.本文用变分法来研究这一问题.借助于与此方程的"极限方程"相关的某个辅助系统,构造了变分泛函ΦM的环绕水平,使得建立在ΦM环绕结构上的极小极大值CM满足0<CM<C,这里C是"极限方程"的最小能量.从而可以证明(C)c条件对所有c<C成立,因此得到了方程的最小能量解. This paper is concerned with solutions to the Dirac equation:-iΣαkku+aβu+M(x)u=g(x,|u|)u.Here M(x) is a general potential and g(x,|u|)u is super linear in u at infinity.We use variational methods to study this problem.By virtue of some auxiliary system related to the "limit equation" of the Dirac equation,we constructed linking levels of the variational functional ΦM such that the minimax value CM based on the linking structure of ΦM satisfies 0 CM C,where C is the least energy of the "limit equation".Thus we can show the(C)c-condition holds true for all c C and consequently,we obtain one least energy solution of the Dirac equation.
出处 《中国科学:数学》 CSCD 北大核心 2011年第6期517-534,共18页 Scientia Sinica:Mathematica
基金 南京信息工程大学科研基金资助项目
关键词 DIRAC方程 变分方法 (C)c条件 超线性 环绕 Dirac equations variational methods (C)c-condition super linear linking
  • 相关文献

参考文献19

  • 1Thaller B. The Dirac Equation. Berlin: Springer, 1992.
  • 2Esteban M J, Sere E. An overview on linear and nonlinear Dirac equations. Discrete Contin Dyn Syst, 2002, 8:281-397.
  • 3Bjorken J D, Drell S D. Relativistic Quantum Fields. New York: McGraw-Hill, 1965.
  • 4Merle F. Existence of stationary states for nonlinear Dirac equations. J Differential Equations, 1988, 74:50-68.
  • 5Cazenave T, Vazquez L. Existence of local solutions for a classical nonlinear Dirac field. Comm Math Phys, 1986, 105: 35-47.
  • 6Balabane M, Cazenave T, Douady A, et al. Existence of excited states for a nonlinear Dirac field. Comm Math Phys, 1988, 119:153-176.
  • 7Balabane M, Cazenave T, Vazquez L. Existence of standing waves for Dirac fields with singular nonlinearities. Comm Math Phys, 1990, 133:53-74.
  • 8Esteban M J, Sere E. Stationary states of the nonlinear Dirac equation: A variational approach. Comm Math Phys, 1995, 171:323-350.
  • 9Del Pino M, Felmer P. Semi-classical states of nonlinear SchrSdinger equations: A variational reduction method. Math Ann, 2002, 324:1-32.
  • 10Bartsch T, Ding Y H. Solutions of nonlinear Dirac equations. J Differential Equations, 2006, 226:210-249.

同被引文献54

  • 1邵嗣烘,汤华中.非线性Dirac方程的数值研究[J].高等学校计算数学学报,2005,27(S1):123-126. 被引量:2
  • 2Boussinesq J. Th6orie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en com- muniquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J Math Pure Aool, 1872, 17:55-108.
  • 3Airault H. Solutions of the Boussinesq equation. Physica D, 1986, 21:171-176.
  • 4Airault H, Mckean H P, Moser J. Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm Pure Appl Math, 197"7, 30:95-148.
  • 5McKean H P. Boussinesq's equation on the circle. Comm Pure Appl Math, 1981, 34:599-691.
  • 6Delft P, Tomei C, Trubowitz E. Inverse scattering and the Boussinesq equation. Comm Pure Appl Math, 1982, 35: 567-628.
  • 7Beals R, Delft P, Tomei C. Direct and Inverse Scattering on the Line. Providence RI: Amer Math Soc, 1988.
  • 8Dubrovin B A. Theta functions and nonlinear equations. Russ Math Surv, 1981, 36:11-92.
  • 9Matveev V B~ Smirnov A O. On the Riemann theta function of a trigonal curve and solutions of the Boussinesq and KP equations. Lett Math Phys, 1987, 14:25-31.
  • 10Matveev V B, Smirnov A O. Simplest trigonal solutions of the Boussinesq and Kadomtsev-Petviashvili equations. Sov Phys Dokl, 1987, 32:202-204.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部