期刊文献+

锥中调和函数的积分表示 被引量:5

Integral representations of harmonic functions in a cone
原文传递
导出
摘要 本文证明了锥内一类调和函数h,若其正部h+=max{h,0}满足一种增长条件,则h能被其边界值的积分表示.同时证明了其负部h-=max{-h,0}也能被类似的一种增长条件所控制.所得结论推广了解析函数和调和函数在上半空间中关于积分表示的相关结果. Our aim in this paper is to prove that a harmonic function h in a cone with its positive part h+ = max{h,0} satisfying a slowly growing condition can be represented by its integral in the boundary of the cone and its negative part h-= max{-h,0} can also be dominated by a similar slowly growing condition,which improves some classical results about analytic and harmonic functions in the upper half space.
作者 乔蕾 邓冠铁
出处 《中国科学:数学》 CSCD 北大核心 2011年第6期535-546,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11071020) 高等学校博士点专项科研基金(批准号:20100003110004) 河南省科技厅科技攻关科学基金(批准号:112102310519)资助项目
关键词 积分表示 调和函数 integral representation harmonic function cone
  • 相关文献

参考文献19

  • 1Rosenblum G, Solomyak M, Shubin M. Spectral Theory of Differential Operators. Moscow: VINITI, 1989.
  • 2Miranda C. Partial Differential Equations of Elliptic Type. London: Springer-Verlag, 1970.
  • 3Courant R, Hilbert D. Methods of Mathematical Physics, vol. 1. New York: Interscience Publishers, 1953.
  • 4张艳慧,邓冠铁.半空间中一类次调和函数的增长性质[J].数学学报(中文版),2008,51(2):319-326. 被引量:11
  • 5Siegel D, Talvila E. Uniqueness for the n-dimensional half space Dirichlet problem. Pacific J Math, 1996, 175:571-587.
  • 6Axler S, Bourdon P, Ramey W. Harmonic Function Theory. Grad Texts in Math, vol. 137. London: Springer-Verlag, 1992.
  • 7Hayman W K, Kennedy P B. Subharmonic Functions, vol. 1. London: Academic Press, 1976.
  • 8Helms L L. Introduction to Potential Theory. New York: Wiley-Interscience, 1969.
  • 9邓冠铁.半平面中解析函数的积分表示[J].数学学报(中文版),2005,48(3):489-492. 被引量:7
  • 10邓冠铁.半平面中有限阶解析函数的因子分解[J].数学学报(中文版),2007,50(1):215-220. 被引量:5

二级参考文献30

  • 1Szego G. Orthogonal Polynomials. In: Colloquium Publications, vol. 23. Providence, RI: Amer Math Soc, 1975.
  • 2Armitage D H, Gardiner S J. Classical Potential Theory. London: Springer-Verlag, 2001.
  • 3Hayman W K, Kennedy P B. Subharmonic Functions, vol. 1. London: Academic Press, 1976.
  • 4Siegel D, Talvila E. Sharp growth estimates for modified Poisson integrals in a half space. Potential Anal, 2001, 15: 333-360.
  • 5Stein E M. Singular integrals and differentiability properties of functions. Princeton: Princeton University Press, 1979.
  • 6Koosis P., Introduction to Hp spaces, Cambridge: Cambridge Unversiuy Press, 1980.
  • 7Boas Jr B. P., Entire functions, New York: Academic Press, 1954.
  • 8Levin B. Ya., Lectures on entire functions, V.150 Translations of Math. Monographs: Am. Math. Soc., 1996.
  • 9Boas Jr B. P., Entire functions, New York: Academic Press, 1954.
  • 10Duren P. L., Theory of H^p- spaces, New York: Academic Press, 1970.

共引文献17

同被引文献63

  • 1Rosenblum G, Solomyak M, Shubin M. Spectral Theory of Differential Operators. Moscow: VINITI, 1989.
  • 2Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 1977.
  • 3Courant R, Hilbert D. Methods of Mathematical Physics, vol. 1. New York: Interscience Publishers, 1953.
  • 4Ahlfors L V. On Phragm6n-LindelSf's principle. Trans Amer Math Soc, 1937, 41:1-8.
  • 5Heins M. On some theorems associated with the Phragmen-Lindelofs principle. Ann Acad Sci Fenn Math, 1946, 48: 1021-1028.
  • 6Gardiner S J. Generalized Means of Subhaxmonic Functions. Doctoral Thesis, Queen's University of Belfast, 1982.
  • 7Hayman W K, Kennedy P B. Subharmonic Functions, vol. 1. London: Academic Press, 1976.
  • 8Axler S, Bourdon P, Ramey W. Harmonic Function Theory. Grad Texts in Math, vol. 137. London: Springer-Verlag, 1992.
  • 9Hormander L. Notions of Convexity. Progr in Math, vol. 127. Boston: Birkhauser, 1994.
  • 10Armitage D H, Gardiner S J. Classical Potential Theory. London: Springer-Verlag, 2001.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部