期刊文献+

LS-SVM在桥梁结构健康预测评估中的研究 被引量:3

Study on LS-SVM in Evaluation of Bridge Structural Health Monitoring
下载PDF
导出
摘要 桥梁的结构变形包含的桥梁结构内涵信息丰富,具有非线性、时序性和样本容量小的特点.利用支持向量机,以杭州湾大桥实测变形数据为研究对象,提出了基于LS-SVM的桥梁结构变形预测模型,通过实验证明了运用其对桥梁结构健康状况进行评估的可行性和有效性,并且通过实验结果对比显示了最小二乘支持向量机在变形预测中的优势. Structural distortion of bridge contains rich connotation information of bridge structures and possesses the features of nonlinear,sequential and small sample capacity.In this article,the calculated model of bridge structural distortion is given out by application of support vector machine and the practical monitoring data of Hangzhou Bay Bridge are taken as the study object.The feasibility and effectiveness of evaluation over bridge structural health state have been proved through test,and the superiority of least square support vector machine in distortion calculation has been shown on comparison of test results.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第6期148-152,共5页 Microelectronics & Computer
基金 北京市教委面上项目(KM200810011006) 北京市中青年骨干教师项目(200775)
关键词 桥梁结构健康监测 变形 最小二乘支持向量机 bridge structural health monitoring distortion least squares support vector machine
  • 相关文献

参考文献9

二级参考文献28

共引文献467

同被引文献30

  • 1汪丹,张亚非.SVM和BP算法在气体识别中的对比研究[J].传感技术学报,2005,18(1):201-204. 被引量:9
  • 2王玲,薄列峰,刘芳,焦李成.最小二乘隐空间支持向量机[J].计算机学报,2005,28(8):1302-1307. 被引量:12
  • 3董辉,傅鹤林,冷伍明.支持向量机的时间序列回归与预测[J].系统仿真学报,2006,18(7):1785-1788. 被引量:63
  • 4胡顺仁,陈伟民,章鹏,符欲梅,梁宗保.基于RBF神经网络的桥梁挠度数据恢复研究[J].仪器仪表学报,2006,27(12):1605-1608. 被引量:16
  • 5Vapnik V N. Statistical learning theory[M]. New York: Wiley, 1998.
  • 6Suykens J, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999(3) :293-300.
  • 7Zhang Li, Zhou Weida, Jiao Licheng. Hidden space support vector machines[J]. IEEE Transactions on Neural Networks, 2004,15 (6) : 1424-1434.
  • 8Zhe Wang, Songcan Chen. New least squares support vector machines based on matrix patterns[J]. Neural Processing Letters, 2007(26) :41-56.
  • 9Suykens J, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999,9 (3) :293-300.
  • 10Zhang Li , Zhou Weida , Jiao Licheng. Hidden space support vector machines[J]. IEEE Transactions on Neural Networks , 2004,15(6):1424-1434.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部