期刊文献+

矩形通道中斜截半椭圆柱面传热和流阻数值模拟 被引量:9

Numerical Simulations on Heat Transfer and Flow Resistance of Oblique-cut Semi-elliptic Cylinder Shell in Rectangular Channel
下载PDF
导出
摘要 在雷诺数Re=7000~26800范围内,对布置单排1对斜截半椭圆柱面的矩形通道内空气传热和流动特性进行三维数值模拟,用无量纲数R分析斜截半椭圆柱面斜截角α、攻角β、高度h、距入口间距S、前缘间距s、布置方式对其在通道内强化传热和流阻综合性能的影响。结果表明,在计算条件下,α=20o、β=15o、h=5 mm、S=100 mm、s=30 mm、渐扩式布置(前缘低后缘高、凹面相对)的斜截半椭圆柱面在通道内的强化传热和流阻综合性能最好。斜截半椭圆柱面在通道内产生的端部涡系对其强化通道内传热和流体流动结构的改变发挥了重要作用。 Three-dimensional numerical simulations were carried out to investigate heat transfer and fluid flow characteristics of a pair of single row oblique-cut semi-elliptic cylinder shells in a rectangular channel. The Reynolds number (Re) of air flow ranged from 7000 to 26800. The oblique angle a, angle of attack fl, height h, distance from the entrance S, spacing of two leading edges s and configuration of the oblique-cut semi-elliptic cylinder shells were considered. The dimensionless number R was used to analyze the effects of these six parameters on the comprehensive performance of heat transfer enhancement and flow resistance in the channel. The results showed that the oblique-cut semi-elliptic cylinder shells with a=-20°, β=15°, h=5 mm, S=100 mm, s=30 mm and configuration of common flow down (with lower leading edges and higher trailing edges, two concave surfaces facing each other) provide the best value of R under the considered conditions. The tip vortex system generated by oblique-cut semi-elliptic cylinder shells plays a vital role in heat transfer enhancement and change of flow structure in the channel.
作者 高猛 周国兵
出处 《中国电机工程学报》 EI CSCD 北大核心 2011年第17期72-78,共7页 Proceedings of the CSEE
基金 高等学校博士学科点专项科研基金项目(20070079018) 中央高校基本科研业务费专项基金(09MG25) 中国电机工程学会电力青年科技创新项目(2008)~~
关键词 强化传热 流动阻力 数值模拟 斜截半椭圆柱面 涡流发生器 heat transfer enhancement flow resistance numerical simulation oblique-cut semi-elliptic cylinder shell vortex generator
  • 相关文献

参考文献19

  • 1Joardar A, Jacobi A M. A numerical study of flow and heat transfer enhancement using an array of delta-winglet vortex generators in a fin-and-tube heat exchanger[J]. Journal of Heat Transfer, 2007, 129 (9): 1156-1167.
  • 2Wu Junmei, Tao Wenquan. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: Verification of field synergy principle [J]. International Journal of Heat and Mass Transfer, 2008, 51(5-6): 1179-1191.
  • 3Wu Junmei, Tao Wenquan. Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator. Part B.. Parametric study of major influence factors[J]. International Journal of Heat and Mass Transfer, 2008, 51(13-14): 3683-3692.
  • 4Jacobi A M, Shah R K. Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress [J]. Experimental Thermal and Fluid Science, 1995, 11(3): 295-309.
  • 5Fiebig M. Vortex generator for compact heat exchanger[J]. Journal of Enhanced Heat Transfer, 1995, 2(1-2):43-61.
  • 6Fiebig M. Embedded vortices in internal flow: heat transfer and pressure loss enhancement[J]. International Journal of Heat and Fluid Flow, 1995, 16(5): 376-388.
  • 7Fiebig M. Vortices, generators and heat transfer[J]. Transactions of Institution ofChemicalEngineers, 1998, 76(2): 108-123.
  • 8Valencia A, Sen M. Unsteady flow and heat transfer in plane channels with spatially periodic vortex generators[J]. International Journal of Heat and Mass Transfer, 2003, 46(17): 3189-3199.
  • 9Tian Liting, He Yaling, Tao Yubing. A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in staggered and in-line arrangements [J]. International Journal of Thermal Sciences, 2009, 48(9): 1765-1776.
  • 10Lei Yonggang, He Yaling, Tian Liting, et al. Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators[J]. Chemical EngineeringScience, 2010, 65(5): 1551-1562.

二级参考文献52

共引文献64

同被引文献75

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部