期刊文献+

结合标签传递的镜头边界检测与分类 被引量:1

Label propagation for shot boundary detection and classification
原文传递
导出
摘要 镜头是视频的基本组成单元,其自动检测与分类是视频分析的重要任务。为了有效利用视频流视觉上的感知特性,提出一种基于标签传递的镜头边界检测与分类算法。该算法利用半监督学习的标签传递机制,通过视频流中连续多帧之间的相关性,将预先构造的初始状态标签通过相关图不断传递,以揭示不同镜头变化类型的视觉感知特征。然后利用多类SVM分类器进行镜头类型分类。实验结果表明,本文算法能有效识别多种镜头类型,对视频分析、检索等具有一定实用价值。 As a fundamental unit in video analysis, automatic shot detection and classification plays a significant role. To keep consistent with the characteristics of human visual perception, the semi-supervised label propagation based shot boundary detection and classification technique is proposed in this paper. Taking the correlations among consecutive frames in video stream into consideration, the pre-constructed initial state of label for each shot category is propagated continuously via correlation graph, of which the final convergent state can be exploited to reveal the intrinsic description of various shot categories. Furthermore, we apply a multi-class SVM to fulfill the shot classification. The experimental results show the effectiveness of the proposed algorithm, from which the performance of video analysis and retrieval can be expected to benefit.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第6期995-1001,共7页 Journal of Image and Graphics
基金 国家杰出青年科学基金项目(61025013) 中新联合研究计划项目(2010DFA11010) 中央高校基本科研业务费专项资金项目(2009JBZ006) 北京市自然科学基金项目(4112043)
关键词 镜头检测 标签传递 镜头分类 支持向量机 shot detection label propagation shot classification support vector machine
  • 相关文献

参考文献12

  • 1刘政凯,汤晓鸥.视频检索中镜头分割方法综述[J].计算机工程与应用,2002,38(23):84-87. 被引量:34
  • 2Zhao Yanjun, Wang Tao, Wang Peng. Scene segmentation and categorization using neuts [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR2007). Minneapolis, Minnesota, USA: IEEE Computer Society, 2007: 1-7.
  • 3Yang Linjun, Lu Hong, Wang Bei, et al. Shot boundary classification by temporal pattern discovery from Laplaeian eigenmap [J]. IEEE Electronics Letters, 2005, 41(17) :958- 960.
  • 4王贝,杨林军,路红,薛向阳.基于流形特征的镜头边界检测后处理算法[J].计算机研究与发展,2006,43(11):1993-1998. 被引量:2
  • 5Zhu Xiaojin, Ghahramani Zoubin. Learning From Labeled and Unlabeled Data With Label Propagation: Technical Report CMU- CALD- 02- 107 [ R ]. Pittsburghers, USA: Carnegie Mellon University, 2002.
  • 6Zhou Dengyong, Bousquet O, Lal T N,et al. Learning with local and global consistency [ C ]//Advances in Neural Information Processing Systems 16. Cambridge, MA,USA:MIT Press, 2003: 321-328.
  • 7Wang Fei, Zhang Changshui. Label propagation through linear neighborhoods [J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20( 1 ) :55-67.
  • 8Blum A, Lafferty J, Rwebangira M R, et al. Semi-supervised learning using randomized mincuts[ C ]//Proceedings of the Twenty-First International Conference on Machine Learning. Banff, Alberta, Canada: ACM, 2004:13-21.
  • 9Rubner Y, Tomasi C, Guibas L J. The earth mover' s distance as a metric for image retrieval [J]. Int. J. Computer Vision, 2000, 40(2) :99-121.
  • 10边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,1999.

二级参考文献37

  • 1[1]A Hanjalic,G C langelaar,P M B Van Roosmalen et al. Image and Video Database: Restoration, Watermarking and Retrieval. Amsterdam,2000
  • 2[2]Uillas Gargi,Rangachar Kasturi,Susan H Stryer. Performance Characterizatinn of Video-Shot-Change Detection Methods[J].IEEE trans on CSVT,2000; 10(1)
  • 3[3]Furht B,Smoliar S W,Zhang H.Video and Image Processing in Multimedia Systems[M].Kluwer Academic Publishers, 1995
  • 4[4]Ahanger G,Little T D C.A survey of technologies for parsing and Indexing Digital Video[J].Journal of Visual Communication and Image Representation, 1996; 7 (1): 28~43
  • 5[5]Boreczky J S,Rowe L.Comparison of video shot boundary detection techniques[C].In :Proceedings of IS&T/SPIE Storage and Retrieval for Still Image and Video Databases IV,1996-02;2670
  • 6[6]Lienhart R.Comparison of automatic shot boundary detection algorithms[C].In:Proceedings of IS&T/SPIE Storage and Retrieval for Image and Video Databases VII, 1999-01 ;3656
  • 7[7]Kikukawa T,Kawafuchi S.Development of an automatic summary editing system for the audio visual resources[J].Transactions of the Institute of Electronics,Information and Communication Engineers, 1992;J75-A(2)
  • 8[8]Otsuji K,Tonomura Y,Ohba Y.Video browsing using brightness data [C].In: Proceedings of SPIE/IS&T VCIP'91,1991; 1606
  • 9[9]Zhang H,Kankanhalli A,Smoliar S W.Automatic partitioning of fullmotion video[J].Multimedia System, 1993; 1:10~28
  • 10[10]Mai K,Miller J,Zabih R.A robust method for detecting cuts and dissolves in video sequenees[C].In:Proceedings of ACM Multimedia95,San Francisco, 1995

共引文献51

同被引文献32

  • 1ZHU Xiao-jin, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions [ C ]//Proc of the 20th International Conference on Machine Learning. 2003:328- 335.
  • 2OLIVIER C, BERNIARD S. Semi-supervised learning [ M ]. Cam- bridge: MIT Press,2006:l-53.
  • 3ZHU Xiao-jin. GHAHRAMANI Z. Learning from labe, lcd and unla- beled data with label propagation, CMU-CALD- 02- 107 [ R ]. Pitts, burghers : Carnegie Mellon University, 2002.
  • 4YANG I.,ing-peng, J! Dong-hong, NIE Yu. Information retrieval using label propagation based ranking C ]//Proc Of the 6th NTCIR Work- shop. 2007 : 140-144.
  • 5KIM S M, PANTEL P, DUAN Lei,et al. Improving Web page classi- fication by label propagation over click graphs [ C ]//Proc of the 18th ACM Conference on Information and Knowledge Management. New York : ACM Press,20( : 1077-1086.
  • 6BLAIR-GOLDENSOHN, HANNAN K, McDONALD R, et al. BuiId- ing a sentiment summarizer for local service reviews [ EB/OL ] : (2008-04-22) [ 2012, 05-221. http..//www, dejanseo, com. au/re- seareh/google134368, pd/'.
  • 7RAO D, RAVICHANDRAN D. Semi-supervised polarity lexicon in- duction[ C]//Proc of the 12th Conference of the European Chapter of the ACL. 2009 : 675-682.
  • 8SPERIOSU M, SUDAN N, UPADHYAY S, et al. Twitter polarity clas- sification with label propagation over lexieal links and the follower graph[C]//Proc of the Ist Workshop on UnsUpervised Learning in NLP. 2011: 53-63. ;.
  • 9NIU Zkeng-yu, JI Dong-hong,TAN C L. Word sense disambiguation using label propagation based semi-supervised learning[ C ]//Proc of the 4-3rd Annual Meeting on Association for Computational Linguis- tics. 2005 : 238-241.
  • 10LANSDALL-WELFARE T, FLAOUNAS L, CRISTIANINI N. Scalable corpus annotation by graph construction and label propagation [ C ]// Proc of the 1 st International Conference on P-attem Recognition Appli- cations and Methods. 2012: 25-34.

引证文献1

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部