期刊文献+

利用时空背景模型的快速运动目标检测方法 被引量:10

Fast moving object detection method using temporal-spatial background model
原文传递
导出
摘要 为了弥补运动目标检测中传统混合高斯背景模型仅对单个像素建模、运算耗时的不足,通过提取背景时间统计特征和空间区域特征建立模型,针对模型中的高斯分量采用一种改进的分量个数自适应算法,并在此模型基础上,提出一种自适应迭代分块目标检测方法。通过包含区域信息的背景模型检测目标,减少在同一背景区域中目标的误判和漏判。将自适应迭代分块检测算法与背景的区域信息结合,可以在不降低检测精度的前提下大大提高算法执行速度。实验结果表明,相对于传统算法,本文检测法检测结果信噪比更高,目标更加完整,运行速度平均提高了22%。 Moving objects extraction is a key part of video surveillance system. To improve the performance of moving objects detection method based on the Gaussian Mixture Model (GMM), an iterative detection algorithm with adaptive partitioning block of pixels is proposed. It is based on the temporal-spatial background that the number of components is improved adaptively and the feature of areas extracted spatially is combined. With the spatial areas information, the algorithm decreases the number of small fake objects and reduces the fragmentation of objects that caused by all kinds of noise. Comparing with detection method based on single pixel, the proposed method would not almost impact the detected results when it reduces the algorithm computation obviously. The results show that the objects extracted by the proposed method with higher SNR and the processing time decreases 22% contrasting to traditional algorithm.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第6期1002-1007,共6页 Journal of Image and Graphics
关键词 混合高斯 背景区域 自适应 分块检测 GMM areas of background adaptive partition block detection
  • 相关文献

参考文献14

  • 1甘新胜,赵书斌.基于背景差的运动目标检测方法比较分析[J].指挥控制与仿真,2008,30(3):45-50. 被引量:28
  • 2Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: real-time tracking of the human body [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 780-785.
  • 3Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [ C ]// CVPR' 99. Fort Collins, Colorado, USA :IEEE, 1999 : 246-252.
  • 4Zhang Xiang, Yang Jie. A novel algorithm to segment foreground from a similarly colored background [ J ]. International Journal of Electronics and Communications, 2009, 63 (10) : 831 - 840.
  • 5杨涛,李静,潘泉,程咏梅.一种基于多层背景模型的前景检测算法[J].中国图象图形学报,2008,13(7):1303-1308. 被引量:17
  • 6刘鑫,刘辉,强振平,耿续涛.混合高斯模型和帧间差分相融合的自适应背景模型[J].中国图象图形学报,2008,13(4):729-734. 被引量:112
  • 7朱碧婷,郑世宝.基于高斯混合模型的空间域背景分离法及阴影消除法[J].中国图象图形学报,2008,13(10):1906-1909. 被引量:21
  • 8Patrick Dickinson, Andrew Hunter, Kofi Appiah. A spatially distributed model for foreground segmentation [ J ]. Image and Vision Computing, 2009,27 (9) : 1326-1335.
  • 9Tian Yingli, Lu Max, Hampapur Arun. Robust and efficient foreground analysis for real-time video surveillance[ C ]//CVPR' 05. San Diego, CA, USA:IEEE, 2005: 1182-1187.
  • 10KacwTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection [ C]//Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems. Kingston, UK:University of Kingston, 2001 : 149-158.

二级参考文献61

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2[1]Collins R,Lipton A J,Kanade T,et al.A System for Video Surveillance and Monitoring:Final Report[R].Technical Report:CMU-RI-TR-00-12,Carnegie Melon University,Pittsburgh,Peen,America,2000.
  • 3[2]Sen-Ching S.Cheung and Chandrika Kammath,Robust techniques for background subtraction in urban traffic video[A],In:Proceedings of SPIE Electronic Imaging:Visual Communications and Image Processing[C],San Jose,California,USA,2004,1:881-892.
  • 4[3]Fuentes L,Velastin S.From tracking to advanced surveillance[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,2003.
  • 5[4]Cucchiara R,Piccardi M,Prati A.Detecting moving objects,ghosts,and shadows in video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(10):1337-1342.
  • 6[5]Haritaoglu I,Harwood D,Davis L.W4:Real-time surveillance of people and their activities[J].IEEE Transactions on Patterns Analysis and Machine Intelligence,2000,22(8):809-830.
  • 7[6]Prati A,Mikic I,Trivedi M,et al.Detecting moving shadows:algorithms and evaluation[J].IEEE Transactions on Patterns on Patterns Analysis and Machine Intelligence,2003,25(7):918-923.
  • 8[7]R.J.Oliveira,P.Canotilho Ribeiro,J.et al.A video system for urban surveillance:Function integration and evaluation.In International Workshop on Image Analysis for Multimedia Interactive Systems,2004.
  • 9[8]Toyama K,Krumm J,Brumitt B,et al.Walflower:Principle and practice of background maintenance[A].In:Proceedings of International Conference on Computer Vision[C],Corfu,Greece,1999:255-262.
  • 10[9]Klaus-Peter Karmann,Achim von Brandt.Moving Object Recognition Using an Adaptive Background Memory[A].In:Cappellini V,ed.Time-Varying Image Processing and Moving Object Recognition[M].Amsterdam,the Netherlands:Elsevier Science Publishers,1990.

共引文献213

同被引文献106

  • 1王卫华,何艳,陈曾平.光电图像序列运动弱目标实时检测算法[J].光电工程,2006,33(4):14-18. 被引量:23
  • 2张文超,王岩飞,陈贺新.基于Tophat变换的复杂背景下运动点目标识别算法[J].中国图象图形学报,2007,12(5):871-874. 被引量:16
  • 3Zha Yufei Bi Duyan.Adaptive learning algorithm based on mixture Gaussian background[J].Journal of Systems Engineering and Electronics,2007,18(2):369-376. 被引量:9
  • 4SENST T, EVANGELIO R H, SIKORA T. Detecting people carrying objects based on an optical flow motion model [ C]//Proc of IEEE Workshop on Applications of Computer Vision. Washington DC : IEEE Computer Society, 2011 : 301 - 306.
  • 5WENG Mu-yun, HUANG Guo-ce, DA Xin-yu. A new interframe difference algorithm for moving target detection[ C ]//Proe of the 3rd International Congress on Image and Signal Processing: 2010: 285- 289.
  • 6MOHAMED S S, TAHIR N M, ADNAN R. Background modeling and background subtraction performance for objecl: detection [ C ]// Proc of the 6th International Colloquium on Signal Processing and Its Applications. 2010:236- 241.
  • 7STAUFFER C, GI'UMSON W E L. Learning patterns of activity using real-time tracking[ J ]. IEEE Trans on Pattern Analysis & Ma- chine Intelligence,2000,22 ( 8 ) :747- 757.
  • 8CHEN Yu-ting, CHEN Chu-song, HI.IANG Chun-rong, et al. Effi- cient hierarchical method for hackground subtraction [ J ]. Pattern Recognition ,2007,40(10) :2706-2715.
  • 9LEE S, LEE J, HAYES M H, et al. Adaptive backgroumt generation for automatic detection of initial object region in multiple color-fiher aperture camera-based surveillance system[ J ]. IEEE Trans on Con- sumer Electronics,2012,58( I ) : 104- 110.
  • 10MADDALENA L, PETROSINO A. A self-arganizing approach to background subtraction for visual surveillance applications[ J ]. IEEE Trans on Image Processing,2008,17(7 ) :1168- 1 177.

引证文献10

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部