期刊文献+

马尔科夫随机场在生物医学图像分割中的应用 被引量:1

Application of Markov random fields in segmentation of image
下载PDF
导出
摘要 目的:建立一种图像分割方法,以适应精确的生物医学图像分析。方法:根据马尔科夫随机场图像模型,利用最大后验概率准则( M A P),提出一种迭代松弛分割算法。结果:在用于生物医学图像以及 C T重建图像的分析测量中得到了较为理想的实验结果。结论:该算法与经典的图像分割算法相比具有分割精度高、可以进行多区域图像分割的特点。 Objective:To seek a method of segmentation for biomedical image. Methods:Based on Markov random fields model of noise, a iteration algorithm was presented by using maximum a posteriori (MAP) criterion. Results:Some ideal experimental results showed that the algorithm had a vast range of application prospect in analysis and measurement of medical cell image and reconstruction of CT image. Conclusion: Compared with other classical algorithms, this algorithm has the characteristics of high precision for segmentation and multi region segmentation.
出处 《第三军医大学学报》 CAS CSCD 北大核心 1999年第9期664-666,共3页 Journal of Third Military Medical University
关键词 马尔科夫随机场 图像分割 生物医学图像 Markov random field image segmentation biomedical image
  • 相关文献

参考文献5

二级参考文献3

共引文献47

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部