期刊文献+

基于相对距离和角度的手指静脉识别方法 被引量:6

Finger vein recognition method based relative distance and angle
原文传递
导出
摘要 根据以静脉图像拓扑结构的本质特性,提出了一种新的手指静脉识别方法.首先对细修复后的手指静脉提取交叉点;然后计算这些交叉点之间的相对距离和交叉点连线产生的夹角;最后将这2种特征融合,进行手指静脉识别.该方法结合静脉自身特征,充分利用了拓扑结构的本质属性,无须定位,一定程度上克服了图像平移、旋转对识别结果的影响.实验结果表明:该方法能够快速准确地进行身份识别,具有实际应用价值. According to the essential characters of the image topology, a finger vein recognition meth- od was proposed. The intersectant points from the repaired and thinned finger vein image were extracted. Then the relative distance between the intersection point and the angle produced by the intersection point connections were calculated. Finallythese two features were combined for finger vein recognition. This method combined with the self characteristics of finger vein which make full use of the essential attribute of the topology without location can effectively overcome the influence on the recognition results caused by image translation and rotation. The experimental results show that the identification fast and accurately can be achieved through the proposed method which has great practical value and prospect.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第5期96-99,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60975022) 国家高技术研究发展计划资助项目(2008AA01Z148) 黑龙江省杰出青年基金资助项目(JC200703) 黑龙江省优秀学科带头人基金资助项目(2007REXXG009)
关键词 手指静脉识别 拓扑结构 特征融合 相对距离 角度 finger vein recognition topology feature fusion relative distance angle
  • 相关文献

参考文献8

  • 1Miura N, Nagasaka A, Miyatake T. Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification [J]. Machine Vision and Applications, 2004, 15(4). 194-203.
  • 2王科俊,袁智.基于小波矩融合PCA变换的手指静脉识别[J].模式识别与人工智能,2007,20(5):692-697. 被引量:32
  • 3余成波,秦华锋,张莲,等.手指静脉身份识别系统的静脉特征提取方法:中国.CNl01593275[P],2009.12.02.
  • 4Zhang Zhongbo, Wu Danyang, Ma Siliang. Multiscale lecture extraction of finger-vein patterns based on wavelet and local interconnection structure neural network[C2//International Conference on Volume: 4 Digital Object Identifier. New York: IEEE Computer Society, 2005: 1081-1084.
  • 5张铃,吴福朝,张钹,韩玫.多层前馈神经网络的学习和综合算法[J].软件学报,1995,6(7):440-448. 被引量:33
  • 6熊新炎 王科俊 贲岘烨等.一种新的近红外手背静脉模式骨架提取方法.哈尔滨工业大学学报,2008,40(1):147-150.
  • 7王科俊,丁宇航,王大振.基于静脉识别的身份认证方法研究[J].科技导报,2005,23(1):35-37. 被引量:27
  • 8Foley J D.计算机图形学导论[M].董士海,译.北京:机械工业出版社,2004:326-327.

二级参考文献6

  • 1季虎,孙即祥,姚伟.图像的小波矩[J].电路与系统学报,2005,10(6):132-136. 被引量:5
  • 2Fu L M,Proc of IJCNN-1992 Vol I,1992年
  • 3Miura N, Nagasaka A, Miyatake T. Feature Extraction of Finger-Vein Patterns Based on Repeated Line Tracking and Its Application to Personal Identification. Machine Vision and Applications, 2004, 15(4): 194-203.
  • 4Ridler T W, Calvard S. Picture Thresholding Using an Iterative Selection Method. IEEE Trans on Systems, Man and Cybernetics, 1978, 8(8): 630-632.
  • 5Ding Yuhang, Zhuang Dayan, Wang Kejun. A Study of Hand Vein Recognition Method // Proc of the IEEE International Conference on Mechatronics and Automation. Niagara Falls, Canada, 2005, IV: 2106-2110.
  • 6吴玺宏,罗定生.信息时代的身份认证[J].电子世界,2004(2):4-7. 被引量:3

共引文献95

同被引文献66

  • 1王科俊,丁宇航,王大振.基于静脉识别的身份认证方法研究[J].科技导报,2005,23(1):35-37. 被引量:27
  • 2王长宇,宋尚玲,孙丰荣,梅良模.手指背关节皮纹识别方法[J].山东大学学报(工学版),2006,36(1):37-40. 被引量:2
  • 3金勇俊,李言俊,张科.图像边缘特征扩展的对数极坐标变换匹配制导方法[J].探测与控制学报,2007,29(2):42-45. 被引量:1
  • 4许燕,胡广书,商丽华,耿进朝.基于Hessian矩阵的冠状动脉中心线的跟踪算法[J].清华大学学报(自然科学版),2007,47(6):889-892. 被引量:13
  • 5阮秋琦.数字图像处理学[M].北京:电子工业出版社,2007.
  • 6LIU Zhi, YIN Yilong, WANG Hongjun. Finger vein recognition with manifold learning [J]. Journal of Network and Computer Applications, 2010( 33 ) :275-282.
  • 7HASHIMOTO J. Finger vein authentication technology and its feature [C]//Symposium on VSLI Circuits Digest of Technical Papers. Hawaii : VSLI, 2006 : 5-8.
  • 8Naoto Miura, Akio Nagasaka, Takafumi Miyataka. Feature extraction of finger-vein patterns based on repeat line tracking and its application to personal identification [J]. Machine Vision and Application, 2004, 15 (4) :194-203.
  • 9YANG Jinfeng, LI Xu. Efficient finger vein localization and recognition [ C ]//International Conference on Pattern Recognition. Turkey, Istanbul :ICPC,2010 : 1148-1151.
  • 10JAIN A K, CHEN YI, DEMIRKUS M. High-resolution fingerprint matching using level 3 features [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007, 29(1) :15-27.

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部