期刊文献+

多目标优化的多种群混合行为二元蚁群算法 被引量:4

Multi-population binary ant colony algorithm with concrete behaviors for multi-objective optimization problem
下载PDF
导出
摘要 针对二元蚁群算法在求解多目标问题时难以同时得到多个解和难以得到Pareto曲面的缺陷,使用多种群策略,改善算法的全局搜索能力,引入环境评价/奖励因子和蚁群混合行为搜索机制,提出了多种群混合行为二元蚁群算法。通过对几个不同带约束多目标函数的测试,实验结果表明该算法在保证全局搜索能力的基础上,拥有很好的多目标求解能力。 Aiming at solving the drawbacks of the original binary ant colony algorithm on multi-objective optimization problems:easy to fall into the local optimization and difficult to get the Pareto optimal solutions,Multi-Population Binary Ant colony algorithm with Concrete Behaviors(MPBACB) is proposed.This algorithm introduces multi-population method to ensure the global optimization ability, and uses environmental evaluation/reward model to improve the searching efficiency.Furthermore, concrete ant behaviors are defined to stabilize the performance of the algorithm.Experimental results on several constrained multi-objective functions prove that the algorithm ensures the good global search ability,and has better effect on the multi-objective problems.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第17期37-41,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.60472099 浙江省自然科学基金(No.Y1080363) 宁波市自然科学基金(No.2007A610051)~~
关键词 二元蚁群 多种群 环境评价 混合行为 多目标 binary ant colony algorithm multi-population environmental evaluation concrete behaviors multi-objective
  • 相关文献

参考文献12

  • 1Veldhuizen D A V.Multiobjective evolutionary algorithms:classifications,analyses,and new innovations[D].Graduate School of Engineering of the Air Force Institute of Technology,Air University,1999.
  • 2Deb K,Agrawal S,Pratap A,et al.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGAII[C] //Parallel Problem Solving from Nature(PPSN VI),Berlin,2000.
  • 3张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173. 被引量:59
  • 4Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C] //Proc of the 1st European Conf on Artificial Life.Paris:Elsevier Publishing,1991:134-142.
  • 5Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary Computing,1997,1 (1):53-56.
  • 6Colorni A,Dorigo M,Maniezzo V.Ant colony system for job-shop scheduling[J].Belgian J of Operations Research Statistics and Computer Science,1994,34(1):39-53.
  • 7熊伟清,魏平.二进制蚁群进化算法[J].自动化学报,2007,33(3):259-264. 被引量:52
  • 8Stutzle T,Dorigo M.Short convergence proof for a class of ant colony optimization algorithms[J].IEEE Trans on Evolutionary Computation,2002,6(4):358-365.
  • 9Meuleau N,Dorigo M.Ant colony optimization and stochastic gradient descent[J].Artificial Life,2002,8(2):103-121.
  • 10陈莉,朱卫东.微粒群优化神经网络及其在环境评价中的运用(英文)[J].生态学报,2008,28(3):1072-1079. 被引量:3

二级参考文献30

共引文献133

同被引文献38

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部