期刊文献+

应用离散量子粒子群的复杂网络社区检测

Community detection in complex networks based on discrete quantum particle swarm
下载PDF
导出
摘要 针对模块度存在的解限制问题,分析了复杂网络社区检测中一种新的测度模块密度。采用二分策略,通过最大化模块密度,提出了基于离散量子粒子群优化进行复杂网络社区检测的算法。通过人工网络和现实网络的实验表明,算法具有较高的检测性能,并且在网络越来越模糊时,也能够检测出网络社区结构。 To overcome the resolution limits drawback of modularity function, a new measure of modularity density in complex network community detection is studied.With bi-partitioning strategy,by maximizing the module density,an algorithm is proposed based on discrete quantum particle swarm optimization for complex network community detection.Through the artificial network and real network experiments it is showed that this algorithm has high detection performance.And when the network becomes increasingly blurred,it can detect the network community structure well.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第17期45-46,60,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60873099 河南省重点科技攻关项目(No.102102210388) 河南省教育厅自然科学研究项目(No.2010A520050 No.2009B520023)~~
关键词 复杂网络 社区检测 粒子群优化 模块密度 complex networks community detection particle swarm optimization modularity density
  • 相关文献

参考文献12

  • 1Girvan M,Newman M E J.Community structure in social and biological networks[J].Proc Natl Acad Sci,2002,99:7821-7826.
  • 2Newman M E J.Finding community structure in networks using the eigenvectors of matrices[J].Phys Rev E,2006,74.
  • 3杨博,刘大有,LIU Jiming,金弟,马海宾.复杂网络聚类方法[J].软件学报,2009,20(1):54-66. 被引量:209
  • 4戴飞飞,唐普英.基于DNA遗传算法的复杂网络社区结构发现[J].计算机工程与应用,2008,44(3):53-56. 被引量:7
  • 5Fortunato S,Barthélemy M.Resolution limit in community detection[J].Proc Natl Acad Sci,2007,104.
  • 6Li Z P,Zhang S H,Wang R S,et al.Quantitative function for community detection[J].Phys Rev E,2008,77(3).
  • 7Zhang S H,Ning X M,Ding C.Maximizing modularity density for exploring modular organization of protein interaction[C] //The 3rd International Symposium on Optimization and Systems Biology(OSB' 09),2009:361-370.
  • 8Ma X K,Gao L,Yong X R,et al.Semi-supervised clustering algorithm for community structure detection in complex networks[J].Physica A,2010,389:187-197.
  • 9Yang S,Wang M,Jiao L.A quantum particle swarm optimization[C] //Proceedings of the 2004 IEEE Congress on Evolutionary Computation,2004:320-324.
  • 10Danon L,Díaz-Guilera A,Duch J,et al.Comparing community structure identification[J].Journal of Statistical Mechanics:Theory Exp,2005,2005.

二级参考文献63

  • 1Girvan M,Newman M E J.Community structure in social and biological networks[C]//Proceedings of National Academy of Science,2002,99:7821-7826.
  • 2Clauset A,Newman M E J,Moore C.Finding community structure in very large networks[J].Physical Review E,2004,70.
  • 3Newman M E J.Fast algorithm for detecting community structure in networks[J].Physical Review E,2004,69.
  • 4Holland J H.Adaptation in Natural and Artificial Systems[M].USA:The University of Michigan Press,1975.
  • 5Zachary W W.An information flow model for conflict and fission in small groups[J].Journal of Anthropological Research,1977,33:452-473.
  • 6Girvan M,Newman M E J.Community structure in social and biological networks[J].Proceedings of National Academy of Science,2002,99:7821-7826.
  • 7Tasgin M.Community detection model using genetic algorithm in complex networks and its application in real-life networks[D].Istatbul:Bogazici University,2005.
  • 8Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 9Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 10Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.

共引文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部