期刊文献+

净化除钴离子浓度WA-SVM软测量 被引量:1

Soft sensing method of ionic concentration in cobalt removal purification process based on WA and SVM
下载PDF
导出
摘要 二段入口离子浓度是锌湿法冶炼二段净化除钴过程优化控制的一个关键因素。针对二段入口离子浓度在线检测困难的问题,提出了一种结合小波分析和支持向量机的离子浓度参数软测量方法,直接采用人工检测的历史数据直接建立离子浓度软测量模型。该方法采用小波分析方法将时间序列分解成具有不同频率特征的子序列。在相空间重构的基础上,利用最小二乘支持向量机建立各子序列估计模型,其中模型中的参数采用混沌粒子群算法进行优化选择。对各子序列输出重构合成得到最终的在线估计结果。应用工业现场数据的验证结果表明,所提模型具有较高的精度,相对误差小于10%的样本达97.5%,在线估计精度能够满足现场实际生产工艺要求。 The influent ionic concentration of the second stage is an important factor for the operation optimization of cobalt removal purification process in zinc hydrometallurgy.With the difficulty in online measurement of the influent ionic concentration, a soft sensing model of ionic concentration is proposed based on the time series analysis of manual measurement results,using the Wavelet Analysis(WA) and Support Vector Machine(SVM).The time series of ionic concentration are decomposed into multiple subsequences by using wavelet decomposition and these subsequences are reconstructed into each subspace in phase space.Then,the SVM model is built in every subspace and the parameters in SVM model are optimized by using the chaotic Particle Swarm(PSO) algorithm,Finally,the outputs of each subsequence model are synthesized as the soft sensing result of influent ionic concentration.The verified results of the production data show that the proposed model has a high precision and the samples with relative error less than 10% are up to 97.5%.It indicates that the online prediction precision can meet the technological requirement of practical production.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第17期212-214,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60874069 国家高技术研究发展计划(863)(No.2009AA04Z124) 湖南省自然科学基金项目(No.09JJ3122)~~
关键词 支持向量机 小波分析 混沌粒子群算法 离子浓度 在线估计 support vector machine wavelet analysis chaotic Particle Swarm Optimization(PSO) ionic concentration prediction online
  • 相关文献

参考文献12

  • 1Tham M T,Morris A J,Montague G A.Soft-sensors for process estimation and inferential control[J].J Process Control,1991,1(1):3-14.
  • 2李勇刚,桂卫华,阳春华.一种改进的RPCL聚类算法及其在软测量中的应用[J].计算机工程与应用,2003,39(31):30-32. 被引量:2
  • 3宋军,杨凌,金强.基于改进Elman网络的软测量建模方法[J].计算机工程与应用,2008,44(16):233-235. 被引量:4
  • 4俞金寿.软测量技术及其应用[J].自动化仪表,2008,29(1):1-7. 被引量:102
  • 5Vapnik V.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks,1999,10(5):988-999.
  • 6Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 7Suykens J A K,Vandewalle J,Moor B D.Optimal control byleast squares support vector machines[J].Neural Networks,2001,14(1):23-25.
  • 8Mallat S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1989,11 (7):674-693.
  • 9Daubechies l.Orthonormal bases of compactly supported wavelets[J].Communication on Pure and Applied Mathematics,1988,41 (11):909-996.
  • 10徐科,徐金梧,班晓娟.基于小波分解的某些非平稳时间序列预测方法[J].电子学报,2001,29(4):566-568. 被引量:101

二级参考文献70

共引文献290

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部