期刊文献+

一种改进的基于FFT的PIV互相关算法 被引量:7

Improvement of FFT-based cross-correlation algorithm for PIV
下载PDF
导出
摘要 针对粒子图像测速(particle image velocimetry,PIV)技术中互相关算法运算量巨大的问题,提出了一种改进的基于快速傅里叶变换(FFT)的互相关算法.改进算法根据频域抽取原理,设置相关窗口重叠率为50%,重叠窗口一个维度的FFT值可由其相邻重叠子窗口的同一维度FFT值经频移叠加获得,无需进行FFT,有效减少了互相关运算中的重复FFT运算量.最后,利用CCD相机连续采集多帧粒子图像进行了算法对比验证及分析.实验结果表明,改进算法在运算效率方面实际提高了约12.25%. An improved fast Fourier transform(FFT)-based cross-correlation algorithm is proposed to solve the computational efficiency problem of cross-correlation in particle image velocimetry(PIV).Based on the decimation in frequency theory,when the overlapping correlation window size is about 50%,the one-dimensional FFT values of overlapping windows are composed of their neighbor sub-window′s FFT values by using the frequency shift instead of implementing FFT and the repeating computation in FFT is greatly reduced.Finally,the proposed method was tested with the real particle images continuously acquired by CCD camera.The experimental results show about 12.25% increase in computational efficiency compared with the traditional method.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2011年第3期417-421,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(50879098)
关键词 粒子图像测速 互相关算法 快速傅里叶变换(FFT) 频域抽取 运算效率 particle image velocimetry cross-correlation algorithm fast Fourier transform(FFT) decimation in frequency domain computational efficiency
  • 相关文献

参考文献11

  • 1ADIRAN R J. Twenty years of particle image velocimetry [J]. Experiments in Fluids, 2005, 39(2) : 159-169.
  • 2ZHANG Wei, HAIN R, KAHLER C J. Scanning PIV investigation of the laminar separation bubble on a SD7003 airfoil [J]. Experiments in Fluids, 2008, 45 (4) :725-743.
  • 3WIENEKE B. Volume self-calibration for 3D particle image velocimetry [J].Experiments in Fluids, 2008, 45(4) :549-556.
  • 4MUNOZ J M I, DELLAVALE D, SONNAILLON M O, et al. Real-time particle image velocimetry based on FPGA technology [C] // 5th Southern Conference on Programmable Logic. Brazil:IEEE, 2009.
  • 5ALVAREZ L, CASTANO C A, CARCIA M, et al. 3D motion estimation using a combination of correlation and variational methods for PIV[J].Computer Aided Systems Theory, 200.7(4739) :612-620.
  • 6ADRIC E, VLACHOS P P. Assessment of advanced windowing techniques for digital particle image velocimetry [ J ]. Measurement Science and Technology, 2009, 20(7) :1-9.
  • 7王灿星,林建忠,山本富士夫.二维PIV图像处理算法[J].水动力学研究与进展(A辑),2001,16(4):399-404. 被引量:38
  • 8ROTH O I, KATZ J. Five techniques for increasing the speed and accuracy of PIV interrogation [J]. Measurement Science and Technology, 2001, 12 (3) : 238-245.
  • 9高殿荣,王益群,申功炘.DPIV技术及其在流场测量中的应用[J].液压气动与密封,2001,21(5):30-33. 被引量:18
  • 10STANISLAS M, OKAMOTO K, KAHLER C J. Main results of the second international PIV challenge [J].Experiments in Fluids, 2005, 39(2) : 170-191.

二级参考文献12

共引文献49

同被引文献65

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部