摘要
提出了一种新的基于粒子群优化的最小二乘支持向量机(PSO_LSSVM)模型的抽油机电动机扭矩软测量方法,该方法利用粒子群算法取代以往惯用的交叉验证法来进行模型参数的优化,从而避免了参数选择时的盲目性,提高了效率。仿真验证证明,基于PSO_LSSVM的抽油机电动机扭矩软测量模型能够有效地克服传统测量方法的不足,并获得较理想的测量精度和速度,具有小样本学习能力强和计算简单的优点。
A new model of the torque soft measurement method was presented based on PSO_LSSVM.This method used particle swarm optimization algorithm to replace the previous cross-validation method for model parameter's optimization,in order to avoid the blindness of the parameter choices and improve efficiency.It is verified by simulation,the soft measurement model for torque of pumping unit based on PSO_LSSVM can effectively address the deficiencies of traditional measurement methods and obtain better measurement accuracy and speed,possessing benefits of an outstanding ability for small-sample study and being easy to compute.
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2011年第11期1333-1336,共4页
China Mechanical Engineering