期刊文献+

一种基于线性物理规划和两级集成系统综合方法的多目标多学科优化方法

A Multi-objective Multidisciplinary Design Optimization Method Based on Integrating Linear Physical Programming and Bi-level Integrated System Synthesis
下载PDF
导出
摘要 提出一种高效、直观的方法来解决多目标多学科设计优化问题。在该方法中,设计者首先确定线性物理规划中各目标的偏好类型及偏好值,然后利用ε约束法将多目标问题转换成单目标问题,再采用两级系统集成综合方法进行多学科设计优化,得到不同设计优化方案,最后采用线性物理规划评价各设计方案的优劣并得到最优方案。采用该方法对一个工程实例(减速器模型)进行了优化,从5个设计方案中求得了最优设计方案,最优解中的两个目标函数值都在可容忍区间,从而也验证了该方法的有效性。通过该算例也说明该方法具有很好的工程应用价值。 We present a novel method to deal with multi-objective multidisciplinary design optimization by integrating linear physical programming with bi-level integrated system synthesis.At first,designers decided to which criterion class the objectives belong,and choose the range targets for every objective.Then the multi-objective problem was converted to single-objective problem with-constraint method.Bi-level integrated system synthesis was used to solve the multidisciplinary design optimization problem.All design schemes were evaluated by linear physical programming and the optimum design scheme can be obtained.A speed reducer model was investigated to demonstrate the performance of the presented method.The optimal design scheme can be obtained from five design schemes.The volume and stress of the optimal design scheme are in the tolerable range.The presented method can be applied in the engineering problems.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2011年第11期1357-1361,共5页 China Mechanical Engineering
基金 国家科技重大专项项目(2010ZX04017-013-005) 国家自然科学基金资助项目(51075138) 湖南工程学院2011年科研启动基金资助项目
关键词 多学科设计优化 多目标优化 线性物理规划 两级集成系统综合方法 multidisciplinary design optimization multi-objective optimization linear physical programming bi-level integrated system synthesis
  • 相关文献

参考文献9

  • 1陈琪锋,戴金海.多目标的分布式协同进化MDO算法[J].国防科技大学学报,2002,24(4):12-15. 被引量:10
  • 2Tappeta R V, Renaud J. Multi- objective Collaborative Optimization[J]. Journal of Mechanical Design, 1997, 119(3):403-411.
  • 3Sobieszczanski - Sobieski J, Venter G. Imparting Desired Attributes in Structural Design by Means of Multi- objective Optimization[J]. Struet. Multidisc. Optim. , 2005, 29(6): 432-444.
  • 4Zhang Keshi, Han Zhonghua, Li Weiji, et al. Bilevel Adaptive Weighted Sum Method for Multi- Objective Optimization[J]. AIAA Journal, 2008, 46(10) :2611-2624.
  • 5Huang C H, Galusk J,Bloebaum C L. Multi-objective Pareto Concurrent Subspace Optimization for Multidisciplinary Design[J]. AIAA Journal, 2007, 45(8) : 1894-1907.
  • 6Messac A. Physical Programming: Effective Optimization for Computational Design[J]. AIAA Journal,1996,34(1) :149-158.
  • 7MeAllister C D, Simpson T W, Hacker K, et al. Integrating Linear Physical Programming Within Collaborative Optimization for Multiobjective Multidiseiplinary Design Optimization[J]. Struct. Multidisc. Optim. , 2005, 29(3) :178-189.
  • 8Sobieszczanski- Sobieski J, Agte J S, Jr Sandusky R R. Bi-level Integrated System Synthesis(BLISS), AIAA- 98- 4916[R]. Hampton, Virginia: Langley Research Center, 1998.
  • 9陈伟,杨树兴,赵良玉.BLISS方法的基本理论及应用[J].弹箭与制导学报,2007,27(5):229-232. 被引量:5

二级参考文献9

  • 1Sobieszczanski-Sobieski J, Haftka T. Multidisciplinary aero-space design optimization: survey of recent developments [R]. AIAA 96-0711,1996.
  • 2Tappeta R V,Renaud J E. Multiobjective collaborative optimization[J]. Journal of Mechanical Design, 1997, 119(9): 403~411.
  • 3Eckart Zitzler. Evolutionary algorithms for multiobjective optimization: methods and applications[D]. Doctoral thesis ETH NO. 13398, Zurich: Swiss Federal Institute of Technology (ETH), Aachen, Germany: Shaker Verlag.
  • 4Deb K, Agrawal S, Pratap A, Meyarivan T. A fast non-dominated sorting genetic Algorithm for multi-objective optimization: NSGA-Ⅱ[R]. KanGAL Report No.200001.
  • 5Balling R J, Sobieszczanski-Sobieski J. Optimization of coupled systems: a critical overview of approaches[J]. AIAA Journal, 1996, 34 (1): 6-17.
  • 6Sobieszezanski-Sobieski J, Jeremy S Agte, Robert R Sandusky et al. Bi-level integrated system synthesis (BLISS)[R]. Virginia: NASA, 1998.
  • 7Sobieszezanski-Sobieski J, Srinivas Kodiyalam. BLISS/S: A new method for two-level structural optimization[R]. AIAA- 99- 1345.
  • 8Schmit Jr L A, R K. Multilevel approach to minimum weight design including buckling constraints [J].AIAA Journal, 1978, 16(2): 97-104.
  • 9陈琪锋,戴金海,李晓斌.分布式协同进化MDO算法及其在导弹设计中应用[J].航空学报,2002,23(3):245-248. 被引量:10

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部