期刊文献+

拉伸过程中晶向对银单原子线形成几率影响的分子动力学模拟 被引量:7

Molecular Dynamics Simulation of the Influence of Crystal Orientation on the Formation Probability of Silver Monoatomic Chains during Stretching
下载PDF
导出
摘要 采用基于原子镶嵌势函数的分子动力学方法,模拟了银纳米线沿[100]、[110]和[111]晶向拉伸过程中的空间原子结构和性能.研究结果表明不同晶向的材料力学性质有显著不同,屈服应力按照[111]、[110]和[100]依次降低.从形变位图观察到纳米线在断裂前形成单原子线排列.由900个分子动力学模拟样本统计得出沿三个晶向形成单原子线的几率,其中沿[111]晶向形成单原子线的几率明显高于其他两个晶向.本文从形变机理阐述了单原子线生成几率与晶向的依赖关系. We carried out molecular dynamics simulations using an embedded atom method to investigate the mechanical properties and structure deformation of silver nanowires during anisotropic stretching along the [100], [110], and [111] orientations. The simulation results show that the mechanical properties are different for the three crystal directions. Before breaking, linear atomic chains were observed for all three orientations. A total of 900 samples were investigated for a comprehensive understanding of the influence of orientation on the formation probability of linear atomic chains. Stretching along the [111] direction had a higher probability than that along the other two directions. This difference is explained by a stretching mechanism of the silver nanowire.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2011年第6期1341-1345,共5页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20821063,20873063,51071084) 国家重点基础研究发展计划(973)(2007CB936302,2010CB732400) 江苏省自然科学基金(BK2010389)资助项目~~
关键词 原子线 分子动力学模拟 镶嵌势 纳米线 晶向 Silver Linear atomic chain Molecular dynamics simulation Embedded atom method Nanowire Orientation
  • 相关文献

参考文献20

  • 1Rodrigues, V.; Ugarte, D. Eur. Phys. J. D 2001, 16, 395.
  • 2Rodrigues, V.; Fuhrer, T.; Ugarte, D. Phys. Rev. Lett. 2000, 85, 4124.
  • 3Ohnishi, H.; Kondo, Y.; Takayanagi, K. Nature 1998, 395, 780.
  • 4Diao, J. K.; Gall, K.; Dunn, M. L. J. Mech. Phys. Solids 2004, 52, 1935.
  • 5Diao, J. K.; Gall, K.; Dunn, M. L. Nano Lett. 2004, 4, 1863.
  • 6Lin, J. S.; Ju, S. P.; Peng, Y. L.; Lee, W. J. Progress on Advanced Manufacture for Micro/Nano Technology 2005, Pt 1; 2 2006, 505-507, 385.
  • 7Sato, K.; Huang, W. J.; Bohra, F.; Sivaramakrishnan, S.; Tedjasaputra, A. P.; Zuo, J. M. Phys. Rev. B 2007, 76, 144113.
  • 8Nose, S. J. Chem. Phys. 1984, 81, 511.
  • 9Hoover, W. G. Phys. Rev. A 1985, 31, 1695.
  • 10Rapaport, D. C. The Art of Molecular Dynamics Simulation. 2nd ed. Cambridge University: Cambridge, 2004; p 49.

同被引文献161

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部