期刊文献+

基于多样性变异的量子行为粒子群优化算法 被引量:2

Quantum-behaved particle swarm optimization with diversity-guided mutation
下载PDF
导出
摘要 为了克服量子行为的粒子群优化(QPSO)算法存在早熟收敛的缺点,提出了一种改进的QPSO算法,在QPSO算法中加入多样性变异算法、设置多样性函数,当多样性较少时,执行变异操作;扩大了种群搜索过程中的搜索范围,避免了种群多样性不断下降。典型标准函数优化的仿真结果表明,该算法具有较强的全局搜索能力。 To overcome the premature convergence of quantum-behaved particle swarm optimization(QPSO) algorithm,this paper proposed QPSO with diversity-guided mutation(QPSO-DGM) to improve the performance of QPSO.In the proposed QPSO-DGM algorithm,set diversity function.When the value of diversity was less during the search,operated the mutation.QPSO-DGM made the particles' search scope expanded and avoided the declination of population diversity.The experiment results on benchmark functions show that both QPSO-DGM have stronger global search ability than QPSO and standard PSO.
出处 《计算机应用研究》 CSCD 北大核心 2011年第6期2064-2066,2101,共4页 Application Research of Computers
关键词 量子行为的粒子群优化算法 多样性变异 多样性函数 标准函数 quantum-behaved particle swarm optimization algorithm diversity-guided mutation diversity function benchmark functions
  • 相关文献

参考文献12

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization [ C ]// Proc of IEEE International Conference on Neural Networks. Piscat- away: IEEE Press, 1995:1942-1948.
  • 2Van den BERGH F. An analysis of particle swarm optimizers [ D ]. Pretoria: University of Pretoria,2001.
  • 3LOVBJERG M, RASUSSEN T K, KRINK T. Hybrid particle swarm optimizer with breeding and subpopulation [ C ]//Proc of the 3 rd Ge- netic and Evolutionary Computation Conferences. 2001:469-476.
  • 4崔志华,曾建潮.基于微分模型的改进微粒群算法[J].计算机研究与发展,2006,43(4):646-653. 被引量:9
  • 5王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报,2006,32(4):630-635. 被引量:33
  • 6SUN Jun, XU Wen-bo, FENG Bin. A global search strategy of quan- tum-behaved particle swarm optimization [ C ]//Proc of IEEE Confer- ence on Cybernetics and Intelligent Systems. Piscataway: IEEE Press ,2004:291-294.
  • 7LIU Jing, SUN Jun, XU Wen-bo. Improving quantum-behaved parti- cle swarm optimization by simulated annealing [ C ]//Proc of Interna-tiunal Conference on Intelligence Computing. Heidelberg: Springer- Verlag, 2006:130-136.
  • 8COELHO L S. Novel Gaussian quantum-behaved particle swarm opti- mizer applied to electromagnetic design [ J ]. Science, Measure- ment & Technology ,2007,11 (5) :290-294.
  • 9SUN Jun, XU Wen-bo, FENG Bin. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level [ C]//Proc of IEEE International Conference on Systems, Man and Cybernetics. Piscataway : IEEE Press,2005:3049-3054.
  • 10YAO Xin, LIU Yong, LIN Guang-ming. Evolutionary programming made faster[ J]. IEEE Trans on Evolutionary Computation,1999, 3(2) :82-88.

二级参考文献17

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2J.Kennedy,R.C.Eberhart.Particle swarm optimization.In:Proc.IEEE Int'l Conf.Neural Networks.Indianapolis,NJ:IEEE Service Center,1995.1942~ 1948
  • 3R.C.Eberhart,J.Kennedy.A new optimizer using particle swarm theory.In:Proc.6th Int'l Symposium on Micro Machine and Human Science.Indianapolis,NJ:IEEE Service Center,1995.39~43
  • 4J.Kennedy,R.C.Eberhart,Y.Shi.Swarm Intelligence.San Francisco:Morgan Kaufmann.2001
  • 5C.A.Coello,M.S.Lechuga.MOPSO:A proposal for multiple objective particle swarm optimization.In:Proc.IEEE Con.Evolutionary Computation.Indianapolis,NJ:IEEE Service Center,2002.151~160
  • 6A.P.Engelbrecht,A.Ismail.Training product unit neural networks.Stability and Control:Theory and Applications,1999,2(1):59~74
  • 7H.Yoshida,K.Kawata,Y.Fukuyama,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability.In:Proc.Int' l.Conf.Intelligent System Application to Power Systems.Indianapolis,NJ:IEEE Service Center,1999.117~121
  • 8S.Naka,T-Grenji,T.Yura,et al.Practical distribution state estimation using hybrid particle swarm optimization.In:Proc.IEEE PES Winter Meeting.Indianapolis,NJ:IEEE Service Center,2001.134~ 141
  • 9Y.Shi,R.C.Eberhart.Particle swarm optimization with fuzzy adaptive inertia weight.In:Proc.Workshop on Particle Swarm Optimization.Indianapolis,NJ:IEEE Service Center,2001
  • 10M.Clerc.The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization.In:Proc.Congress on Evolutionary Computation.Indianapolis,NJ:IEEE Service Center,1999.1951~1957

共引文献38

同被引文献21

  • 1Kennedy J, Eberhart R. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE,1995: 1942-1948.
  • 2Van den Bergh E A new locally convergent particle swarm optimizer[C]. Proc of the IEEE Int Conf on Systems, Man and Cybernetics. Tunisia: IEEE, 2002: 94-99.
  • 3Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[C]. Proc of 2004 Congress on Evolutionary Computation. Portland: IEEE, 2004: 325-331.
  • 4Coelho L S. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineeringdesign problems[J]. Expert Systems with Applications, 2010, 37(2): 1676-1683.
  • 5Sun J, Lai C H, Xu W B, et al. A modified quantum- behaved particle swarm optimization [C]. Proc of IEEE Conf on Computational Science. Beijing: IEEE, 2007: 294-301.
  • 6Liu J, Sun J, Xu W B. Improving quantum-behaved particle swarm optimization by simulated annealing[J]. Computational Intelligence and Bioinformatics, 2006, 4115: 130-136.
  • 7Chen D B, Wang J T. An improved group search optimizer with operation of quantum-behaved swarm and its application[J]. Applied Soft Computing, 2012, 12(2): 712-725.
  • 8Sun J, Fang W, Palade V, et al. Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point[J]. Applied Mathematics and Computation, 2011, 218(7): 3763-3775.
  • 9Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 10刘军民,高岳林.混沌粒子群优化算法[J].计算机应用,2008,28(2):322-325. 被引量:68

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部