摘要
为了克服量子行为的粒子群优化(QPSO)算法存在早熟收敛的缺点,提出了一种改进的QPSO算法,在QPSO算法中加入多样性变异算法、设置多样性函数,当多样性较少时,执行变异操作;扩大了种群搜索过程中的搜索范围,避免了种群多样性不断下降。典型标准函数优化的仿真结果表明,该算法具有较强的全局搜索能力。
To overcome the premature convergence of quantum-behaved particle swarm optimization(QPSO) algorithm,this paper proposed QPSO with diversity-guided mutation(QPSO-DGM) to improve the performance of QPSO.In the proposed QPSO-DGM algorithm,set diversity function.When the value of diversity was less during the search,operated the mutation.QPSO-DGM made the particles' search scope expanded and avoided the declination of population diversity.The experiment results on benchmark functions show that both QPSO-DGM have stronger global search ability than QPSO and standard PSO.
出处
《计算机应用研究》
CSCD
北大核心
2011年第6期2064-2066,2101,共4页
Application Research of Computers
关键词
量子行为的粒子群优化算法
多样性变异
多样性函数
标准函数
quantum-behaved particle swarm optimization algorithm
diversity-guided mutation
diversity function
benchmark functions