期刊文献+

基于特征的江面轮船识别算法 被引量:4

Ship targets recognition algorithm based on features
下载PDF
导出
摘要 提出了一种江面轮船目标的特征识别方法。首先对江面轮船图像进行预处理,然后通过二维小波变换提取出边缘轮廓,将目标物体与背景分离开来。结合提出的FE(feature extract)算法提取出轮船图像的四个特征,根据这些特征建造一个知识库,通过选取适当的知识,采用产生式规则对目标物体进行判别,排除干扰目标,从而识别出轮船目标。最后从图片库中抽取几张图片进行实验,相比于之前的单特征方法和AdaBoost方法,该方法在识别率上要高于单特征方法,在识别速度上要快于AdaBoost方法。 This paper proposed a feature method for ship recognition.First,preprocessed the image of the boats,and then put up two-dimensional wavelet transform on the image,Abstracted the marginal profile and separated the target from the background.Combined with FE algorithm,got four features of the boats,according to the features,built a knowledge base.Then chose the correct knowledge and used set of generative rules to distinguish the objects,eliminated the interfering objects,identified the ship target.Finally,from the experiment carried on some extracted pictures,and compared with the former single feature mothed and AdaBoost method.It shows that this method can recognize ships more efficiently than single feature method and more effectively than AdaBoost method.
出处 《计算机应用研究》 CSCD 北大核心 2011年第6期2352-2354,2357,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61004112) 中国博士后基金资助项目(20080430750)
关键词 轮船识别 小波滤波 边缘提取 特征提取 知识库 ship recognition wavelet filter edge extraction feature extraction knowledge base
  • 相关文献

参考文献13

二级参考文献28

  • 1季虎,孙即祥,邵晓芳,毛玲.图像边缘提取方法及展望[J].计算机工程与应用,2004,40(14):70-73. 被引量:85
  • 2吴新垣.信息融合及其智能化途径探讨(一)[J].舰船科学技术,1996(3):42-46. 被引量:1
  • 3吴新垣.信息融合及其智能化途径探讨(二)[J].舰船科学技术,1996(5):49-52. 被引量:3
  • 4吴新垣.信息融合及其智能化途径探讨[J].舰船指挥控制系统,1996(3):1-11. 被引量:3
  • 5MALLAT S,ZHONG S. Characterization of Signals from Muhiscale Edges[J]. IEEE Trans Pattern Anal Mach Intell, 1992,14(7) :710 - 732.
  • 6MALLAT S, HWANG WL. Singularity Detection and Processing with the Wavelets[J]. IEEE Trans Inform Theor, 1992,38(2) :617 - 643.
  • 7HANJAL IC A. Shot-boundary Detection: Unraveled and Resolved[J]. IEEE Transactions on Circuits and System for Video Technology ,2002,12 ( 2 ) :90 - 105.
  • 8MEER P, GEOR GESCU B. Edge Detection with Embedded Confidence [J]. IEEE Transactions on Patterm Analysis and Machine Intelligence,2001,23(12) :1351 - 1365.
  • 9[3]N C Mohanty.Image Enhancement and Recognition of Moving Ship in Cluttered Background[J].IEEE,82CH1761-6/82,1982,135-140.
  • 10[1]Tailor A. ,Cross A. ,et al.. Knowledge-based interpretation of remotely sensed images. Image and Vision Computing, 1986,4 (2): 67 ~ 83.

共引文献141

同被引文献32

  • 1伍翼,黄心汉,王敏,李炜.基于扫描线种子填充的二值图像聚类算法[J].华中科技大学学报(自然科学版),2004,32(S1):90-92. 被引量:5
  • 2李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 3金雪丹,施朝健.图像处理与神经网络识别技术在船舶分类中的应用(英文)[J].上海海事大学学报,2007,28(1):11-16. 被引量:4
  • 4ZABIDI M M A,MUSTAPA J,MOKJI M M,et al.Embedded vision systems for ship recognition[C]//Proceedings of TENCON 2009,IEEE Region 10 International Conference.Los Alamitos,CA,USA:IEEE Computer Society,2009:1-5.
  • 5ZHU Changren,ZHOU Hui,WANG Runsheng,et al.A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(9):3446-3456.
  • 6VELLA F.Digital image stabilization by adaptive block motion vectors filtering[J].IEEE Transactions on Consumer Electronics,2002,48(3):796-801.
  • 7MA Z,WEN J,LIANGX.Video image clarity algorithm research of USV visual system under the sea fog[M]// Advances in Swarm Intelligence.Heidelberg,Germany:Springer,2013:436-444.
  • 8CHENG Y Z.Mean shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 9FLUSSER J,SUK T.Pattern recognition by affine moment invariants[J].Pattern Recognition,1993,1 (26):167-174.
  • 10刘晓东,胡兵,李又生.复杂区域的通用性填充算法研究[J].华中理工大学学报,1997,25(6):21-23. 被引量:10

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部